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PREFACE. 

The  following  pages  are  intended  to  serve  as  an  introductory- 
manual  of  Infinitesimal  Calculus  for  beginners  generally,  but 
more  especially  for  students  of  Engineering  and  other  branches 
of  Applied  Science. 

As  a  logical  foundation  of  the  Infinitesimal  Calculus  the 
doctrine  of  Limits  must  be  accepted  as  essential,  but  an 
attempt  has  been  made  at  an  early  stage  to  accustom  the 
reader  to  those  principles  and  operations  which  are  used  in 
the  practical  appUcations  of  the  subject. 

The  order  in  which  the  subject  is  developed,  though  differ- 
ing from  that  of  many  text-books,  is  believed  to  be  well  calcu- 

lated to  meet  the  difficulties  and  secure  the  interest  of  the 
student. 

In  the  present  edition  many  changes  and  some  additions 
have  been  made  which  it  is  hoped  will  bring  the  book  into 

accord  with  present-day  treatment  and  needs. 
To  supplement  the  ordinary  Mathematical  Tables  I  have 

added  short  tables  which  are  intended  to  faciUtate  curve 

tracing  as  well  as  the  rapid  calculation  of  integrals,  etc. 

My  thanks  are  due  to  Professor  Murray  Macneill  for  sug- 
gestions and  for  assistance  in  proof-reading  and  in  the  verifi- 

cation of  examples. 
G.  H.  Chandler. 

Montreal,  December,  19C6. 

ill 
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ELEMENTS 

OF    THE 

INFINITESIMAL  CALCULUS, 

CHAPTER  I. 

LIMITS.    INFINITESIMALS. 

I  Constant.  Variable.  When  a
  quantity  remains  un- 

changed while  another  quantity  changes,  t
he  former  is  called 

a  constant,  the  latter  a  variable.  .  ,  ,        „„ 

TLhni  of  a  variable.  If  the  valu
e  of  a  variable  .  ap- 

nro^ches  nearer  and  nearer  to  tha
t  of  a  constant  a  in  such 

awav  that  their  difference  beco
mes  and  remains  less  in 

abSte  *  Uue  than  any  given  
positive  number,  however 

small%  is  said  to  approach  a  as 
 a  limit,  and  a  is  called  the 

""?  x^\t  the  definition  implies  that  the 
 absolute  value 

ofltbeLes  and  ̂ ^f^^-^ZTZ^^Z^ we  choose  to  assign;    e.g.,  it  becomes   <.iu    
,   

without  regard  to  «'g";    f  .^■'''"la  eS'eLe^^^^^^^  absolute  value 

^?  1^2"if  1."^  "L  H<N  or  ' 
 Kla  indicates  that  the  absolute value  of  X  is  less  than  that  of  « •  ,    ,        ij^nit.      Thus  a:  =  2  may 

t  The  symbol  =  sigmfies  an  W^.^'Yf ̂ ^e  wo^ds  -as  a  limit"  are 
hP  road-    X  approaches  2  (as  a  limit).     It  7®  

T'"" 

not  expressed^'^hey  must  be  
always  understood. 



2  INFINITESIMAL  CALCULUS.  [Ch.  I. 

diminishes,  becoming  less  than  any  smaller  given  positive 

number  (say  10~^),  and  so  on.  While  x  =  2,  x  —  2  cannot 
be  zero;  the  definition  does  not  imply  that  x  acquires  the 
value  2.  If  it  does  become  2,  it  is  no  longer  approaching  2 
as  a  limit. 

Ex.  1.  The  value  of  (x'-4)/(x-2)  is  equal  to  that  of  re +  2 
when  any  number  except  2  is  substituted  for  x.  When  x=2  the 
fraction  takes  the  form  0/0,  an  expression  which  is  undefined 
and  meaningless,  but  when  x  =  2  the  limit  of  the  value  of  the 

fraction  is  equal  to  that  of  a; +  2,  i.e.,  4,  or  in  symbols  * 

4..e-^)-«- 
Similarly,  if  y=2x-\-x\  £:,^o{y/x)=2. 

2.  6  being  the  radian  measure  t  of  an  acute  angle,  d  Hes  be- 
tween sin  0  and  tan  0.  Hence,  dividing  each  of  these  into  sin  0, 

sin  d/d  Hes  between  1  and  cos  6.  But  cos  ̂   =  1  when  ̂   =  0. 
Hence 

3.  The  sum  of  the  terms  of  the  series  1—1  +  ̂ —1  +  .  .  .  has  a 
limit  as  the  number  of  terms  increases  without  bound. 

FiQ.  L 

Let  «n  stand  for  the  sum  of  the  first  n  terms.  Take  OPi  =  1, 
PJ\=-h  P^P.-h  ete.  Then  s.^OP,,  8,=0P2,  s,=OP,,  ete. 
The  points  with  odd  subscripts  continue  to  move  to  the  left, 

♦  The  Hymlxjl  £  is  used  for  "the  limit  of"  (Echols,  Differential  and 
Intcqral  Calculus). 

t  The  radian  (  =57'*-2958  .  .  .=206265")  will  be  always  understood 
to  be  the  unit  angle  unless  the  contrary  is  manifest. 
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those  with  even  subscripts  to  the  right ;  they  tend  toward  meeting 
at  some  point  P,  since  the  fractions  which  are  added  ̂   0.  Hence 

\OP—Sn\  becomes  and  remains  less  than  any  given  positive 
number,  however  small;  therefore  OP  is  the  sum  limit.  The 

limit  is  that  of  the  endless  decimal  '69314  ... 
A  series  which  has  a  limit  is  said  to  be  convergent. 

4.  If  the  series  ?^— |+t— 1  +  .  .  .  be  similarly  represented,  the 
two  sets  of  points  cannot  come  within  a  distance  1  of  each 

other,  since  the  absolute  value  of  the  fractions  added  =1.  Sup- 

pose the  even  P's  to  approach  a  point  P  (really  the  point  P  of 
Ex.  3)  as  a  limit  of  position.  Then  \OP—Sn\  may  become  less 
than  any  given  positive  number,  however  small,  but  it  will  not 

remain  so,  for  the  addition  of  a  single  term  changes  \OP—Sn\ 
by  an  amount  approximately  equal  to  1.  Consequently  there  is 

no  limit,  or  the  series  is  non-convergent.  (Observe  the  signifi- 

cance of  the  words  "and  remains"  in  the  definition  of  §  2). 

3.  A  variable  quantity  may  or  may  not  be  capable  of  as- 
suming a  value  equal  to  that  of  the  limit  which  it  approaches. 

Thus  in  Ex.  1,  x+2^4:  when  x~2,  and  re +2  =  4  when 

x=2.  Also  (^2  — 4)/ (a:  — 2)  =4  when  x  =  2,  but  it  cannot  =4, 
for  when  x  =  2  there  is  no  fraction.  Again,  the  series 

1  — l+J  — .  .  .  can  never  equal  its  limit.  In  certain  cases  the 
limit  and  the  value  are  entirely  different.  For  example 

(Ch.  XL),  sin  x  —  i  sin  2a; -f  J  sin  3a;—.  .  .^irr  or  —^7t  ac- 
cording as  a:=^;r  by  increasing   or  decreasing,  but  =0  when 

X-=7t. 

4.  A  variable  may  approach  nearer  and  nearer  to  its  limit 

Fig.  2. 

in  three  ways:    (1)  by  increasing  only,   (2)  by  decreasing 

only,  (3)  and  by  increasing  and  decreasing.     Thus,  Fig.  2, 
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when  M  moves  to  the  right  v  may  be  supposed  to  approach 
the  limit  a  if  P  moves  along  AB  only,  (2)  along  CD  only, 
or  (3)  from  AB  to  CD,  back  to  AB,  etc.,  its  value  continually 
approaching  a. 

5.  Limit  of  a  constant.  It  is  sometimes  convenient  to 

regard  a  constant  as  its  own  limit.  Thus  £3.^o{ax-\-b)  =  h,'^ 
and  hence  if  a  =  0,  £x^ob  =  h.     So  also  £x.^ax/x=a. 

6.  Infinitesimals.  An  infinitesimal  is  a  variable  whose 

limit  is  zero.  It  is  therefore  a  quantity  which  approaches 
nearer  and  nearer  to  0  in  such  a  way  that  its  absolute  value 
becomes  and  remains  less  than  any  given  positive  number, 
however  small.  Thus  x  is  infinitesimal  when  x  =  0;  if  x 
actually  becomes  0  it  is  no  longer  infinitesimal. 

Ex.  When  a:  is  infinitesimal  the  following  are  also  infinitesimals: 

x^,  sin  X,  tan  x,  1  —cos  x,  log  (1+x),  1  —2^. 

7.  Quantities  which  are  infinitesimal  are  such  solely  on 
account  of  their  tending  to  a  limit  zero,  not  because  of  their 
having  arrived  at  any  particular  degree  of  smallness;  in  other 
words,  their  chief  characteristic  is  not  being  small  but  getting 
smaller.  Nevertheless,  it  is  often  convenient  and  sometimes 
necessary  to  suppose  them  very  small  when  they  begin  to 
=  0;  hence  it  is  customary  to  regard  them  as  very  small 
in  all  cases. 

8.  From  the  definition  of  §  2  it  follows  that  the  difference 
between  a  variable  v  and  its  limit  a  is  an  infinitesimal.  Hence 

v—a  =  i,  or  v  =  a-{-i,  where  i  is  infinitesimal.  Also  if  v  —  a=i, 
or  v  =  a-\-i,  where  v  is  a  variable,  a  a  constant,  and  i  an 
infinitesimal,  a  is  the  limit  of  v. 

Notice  that  the  sign  of  v  is  the  same  as  that  of  a  as  soon 
as  the  absolute  value  of  i  becomes  less  than  that  of  a. 

9.  Infinites.  A  variable  which  is  increasing  (or  decreasing) 
without  bound,  i.e.,  so  as  to  exceed  in  absolute  value  any 

*  As  in  algebra,  letters  near  the  l^eginning  of  the  alphabet  arc  used 
for  constants  unless  the  contrary  is  obvious. 
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given  positive  number,  however  large,  is  called  an  infinite,- 
and  is  represented  by  qo  (or  —  qo  ).  Such  a  quantity  has  no 
limit  which  accords  with  the  definition  of  §  2. 

It  should  be  noticed  that  an  infinite,  like  an  infinitesimal, 

is  a  variable.  If  x  =  0,  l/x=oo  or  —  oo,  and  if  x=x*  or 
-00,  l/a:  =  0. 

Ex.  When  x  =  2,  a;— 2  =  0,  and  l/(a:— 2)  =  oo  or  -oo  accord- 
ing as  X  approaches  its  limit  by  decreasing  or  increasing. 

When  X  =  ̂tz,  tan  x  =  oo  or  —  oo  according  as  x  is  increasing  or 
decreasing. 

10.  Quantities  which  are  neither  infinitesimal  nor  infinite 
are  said  to  be  finite.  A  finite  variable  is  therefore  one  whose 

value  stops  short  at  some  number  which  can  be  assigned. 
11.  If  i  is  an  infinitesimal  and  n  any  constant,  ni  is  an 

infinitesimal. 

For  \m\<  any  assigned  positive  number  a  if  ̂ |<|a/n; 
but  i  does  become  |  <  \a/n,  since  a/n  is  also  an  assignable 
number.     In  special  cases  n  may  be  0,  then  ni  remains  =0. 

If  n  is  infinite,  ni  may  be  infinite,  or  it  may  have  a  limit, 
which  may  or  may  not  be  zero. 

12.  The  sum  of  any  finite  number  n  of  infinitesimals  is 
an  infinitesimal. 

Let  i  be  a  positive  infinitesimal  which  is  and  remains 

greater  than  the  absolute  value  of  any  of  the  given  infini- 
tesimals. Then  the  sum  of  the  given  infinitesimals  <ni 

and  >  —ni,  and  is  therefore  infinitesimal  (§  11). 

If  n  is  infinite,  the  sum  may  have  a  finite  limit.  The  deter- 
mination of  such  a  limit  is  the  fundamental  problem  of  that 

part  of  the  subject  which  is  known  as  the  Integral  Calculus. 

^12  n      1  n{n  +  l)     1 /,      1  \     rru    r    u    r+u 
Ex.  -„+-„+  ...  +-,=-        ,      =o(^  +  ~/-  The  limit  of  the n^    n^  n^    2       n^         2  \      n/ 

sum  for  n  infinite  is  therefore  i. 

*x  =  oo  should  be  read  ''x  is  a  positive  infinite,"  or  "x  increases 
without  bound";  a;=  — oo,  "x  is  a  negative  infinite,"  or  "x  decreases 
without  bound." I 



k 

6  INFINITESIMAL  CALCULUS.  Ch.  L 

13.  Propositions  relating  to  limits.  Let  Vi,  V2  be  two 
variables  which  have  Hmits  ai,  a^.  Then  Vi^ai+ii  and 
V2  =  a2-\-i2,  where  ii  and  12  are  infinitesimals. 

(A)  The  limit  of  the  sum  (or  difference)  of  the  variables 
is  equal  to  the  sum  (or  difference)  of  their  limits. 

For,  (vi  +V2)  -  (ai  +a2)  =  H  +^2, 

which  is  infinitesimal.     Hence  £('^1+^2)=  ̂ i +<^2- 
The  proposition  is  evidently  true  for  the  sum  of  any  finite 

number  of  variables. 

(B)  The  limit  of  the  product  of  the  variables  is  equal  to 
the  product  of  their  limits. 

For,  i;ii;2  —  aia2  =  (ai  +  ii )  (a2  +  ̂2)  —  ̂ ^1^2 
=  0,211  +aii2  +  iii2, 

which  is  infinitesimal.     Hence  £viV2  =  aia2. 
This  also  is  true  for  any  finite  number  of  variables.  Thus 

if  a;  =  a,  x^  =  a^,  a^  =  a^,  etc. 
(C)  The  limit  of  the  quotient  of  the  variables  is  equal  to 

the  quotient  of  their  limits,  provided  that  the  limit  of  the 
divisor  is  not  zero. 

V2       0,2       «2+^2       O2      «2^+«2*2 

which   is  infinitesimal,  since  the  numerator  =0,  while  the 

denominator  ^a-^.     Hence  j^— =  — . V2     a2 

If  a2  =  0  and  au^O,  V\/v2  is  infinite  and  therefore  has  no 
limit.     If  a2=0  and  ai=0,  V1/V2  is  the  quotient  of  two 
infinitesimals  and  may  have  a  limit,  as  in  Exs.  1  and  2  of 
§  2.     The  determination  of  such  a  limit  is  the  fundamental 

problem  of  that  part  of  the  subject  which  is  known  as  the 
Differential  Calculus. 
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Ex.  1.  Since  tan  6 

sin  d 
sin  e  tan  (9         d 

cos  d'  6         cos  d 

Hence  (§  2,  Ex.  2),     £..o(^)  =5-  =  l- 
/sin  (9\ 

o    o-         -,  o       sin^^  .    1-cos^      \    d   J 2.  Since  1— cos  d  = 
1  +  C0SI9'     •*         02  1  +  008  0' 

•    r       A  -cos  Q\  _    1     _i 
•^^=^0V      02      /      1  +  1~2' 

sin^  0  .  /tan0— sin0\  _1 

cos0(l  +  cos0)'     --^^^oV         ̂ 3         j  "2 

o    .       n      •    o  —  -  .    r       /tan  0— sin  0 3.  tan0— sin0=  ^       ' 

n  — 1  n 

n-2  2^ 
n 

a  +  b     cos^(A— 5) 

\A  B 

5.  In  any  plane  triangle, 
c  C0S^(A+i5) 

If  a  and  &  are  tangents  at  two  points  near  * 
one  another  on  a  curve,  and  the  points  ap- 

proach coincidence,  A  and  5  =  0  and  there- 

fore the  right-hand  member  of  the  above  =  1 .  F    ̂  s 
Hence  ;^(a  +  6)/c  =  l  when  c  =  0.     We  may 
assume  that  the  arc  >  c  and  <a-\-b.    Hence  in  any  curve  the  limit 
of  arc/chord  is  1  as  arc  and  chord  =  0. 

6.  Show  that  ̂ x=a4^3_^a._2^4a3  +  a-2'  provided  that  a  is 

not  a  root  of  the  equation  4a:^  +  x— 2  =0. 

14.  Orders  of  infinitesimals.  If  the  limit  of  j^/a,  the 
quotient  of  two  infinitesimals,  is  zero,  /?  is  said  to  be  of  a 

higher  order  than  a.  If  l^/a  has  a  limit  which  is  not  zero, 

/?  is  said  to  be  of  the  same  order  as  a.  If  ̂ /a^  (where  n  is  a 
constant)  has  a  limit  which  is  not  zero,  ̂   is  said  to  be  of 
the  nth  order,  a  being  assumed  to  be  of  the  first  order. 

*  It  is  assumed  that  the  points  may  be  taken  so  near  each  other 
that  the  arc  is  everywhere  concave  to  the  chord. 
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Ex.  1.  a  and  fi  being  of  the  first  order,  aJS  is  of  the  second 

order,  a^/?,  a^^  of  the  third,  «'/?,  a^^\  a^  of  the  fourth. 
2.  If  0  is  infinitesimal  and  of  the  first  order,  sin  d  and  tan  0 

are  of  the  first  order,  1  —cos  0  of  the  second,  tan  ̂ — sin  d  of  the 
third. 

15.  Definition.  When  the  limit  of  the  quotient  of  two 

infinitesimals  is  1  the  infinitesimals  are  said  to  be  equiva- 
lent.* 

Thus  if  d  is  infinitesimal,  6,  sin  d,  and  tan  6  are  equivalent; 
also  an  infinitesimal  arc  and  its  chord. 

If  the  limit  of  /?/a  is  h  {h  being  any  constant,  not  zero), 
the  limit  of  ̂ /ha  is  1,  hence  ̂   is  equivalent  to  ha.  Thus 

I  — cos  6  is  equivalent  to  id^,  tan  ̂   — sin  ̂   to  id^. 
16.  If  the  difference  of  two  infinitesimals  of  the  same 

order  is  of  a  higher  order,  they  are  equivalent. 

For,  if  ̂ =a:+i,  p/a  =  l-{-i/a,    .'.  £(/?/a)  =  l  if  £{i/a)  =  0. 
Conversely,  the  difference  of  two  equivalent  infinitesimals 

is  of  a  higher  order. 

For,  if  p/a  =  \-\-i,  /?=a:+^a:,  and  ia  is  of  a  higher  order 
than  a. 

The  letter  /  will  be  used  as  a  symbol  for  higher  infini- 
tesimals. Thus  if  d  is  infinitesmal,  sin  ̂   =  ̂  + 7,  tan  6=0-\-Ii; 

also,  since  1  — cos  d  is  of  the  second  order,  cos  ̂ =1+72. 
17.  The  limit  of  the  quotient  of  two  infinitesimals  is  not 

changed  when  either  is  replaced  by  an  equivalent  infini- 
tesimal. 

For     •■  i=l   I    ̂  
a    ̂     a'    a 

:,  fL^fl^    if    ff      X     and     ;£-,=  !. 

Hence  if  a  and  /?  consist  of  infinitesimals  of  different  orders, 
the  limit  of  /?/«  depends  only  on  the  infinitesimals  of  the 
lowest  order  in  each. 

*  Not  equal,  but  equivalent  in  the  aense  of  being  interchangeaV)le 
in  the  determination  of  the  limit  of  a  quotient  or  of  a  sum  (§§  17,  91). 



15-17.1 LIMITS.    INFINITESIMALS. 

Examples. 

1.  Let  AB  he  Si  circular  arc  of  radius  a  subtending  an  infinitesi- 
mal angle  0  at  the  centre,  BC  perpendicular  to  OA,  AD  and 

BE  tangents.     Let  6  be  regarded  as  of  the  first  order.    Then 

(1)  The  arc  AB=ad,  and  is  therefore  of  the  first  order. 

(2)  ̂ ejK«:di^^^2asmi.^^2^  ̂ ^^  ̂^^  ̂^^^^_ 

C  A 

Fig.  4. 

The  chord  is  therefore  of  the  first  order  and  equivalent  to  ad, 
the  arc. 

CA       oO-cosl)^ 

Hence  CA  is  of  the  second  order  and  equivalent  to  \ad^, 

,,,    rAD-CB     ^a(tan  ̂  -sin  ̂ ) 
(4)  £   ^i— =:^   J,   =«-i- 

Hence  AD  —  CB  is  of  the  third  order  and  equivalent  to  \ad^. 

j-BD-CA       {CA/cosd)-CA       a{l-cosey 

=£ 

ai^d^y 

■ia. 

Hence  BD  —CA  is  of  the  fourth  order  and  equivalent  to  {ad*. 

2.  Show  that  the  limit  of  ̂ =^ — 77,  =2. JbD—AJi 

3.  Show  that  (^^  +  £;5) -chord  AB  is  equivalent  to  lad\  and 
hence  that  the  difference  of  arc  and  chord  is  an  infinitesimal 
of  at  least  the  third  order. 

4-  Find  £^-,:^ 
when  a;  =1  and  a: -2.     Ans.  (1)  h  (2)  i- 
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Show  that  there  is  no  limit  when  x  =  0  or  —1. 

f.      cosecx— cotx  -      1— cos'^     , 

'n/I+x  —1 

9-  ̂ x=o"   =^-    [Rationalize  the  numerator.] 

^-     >.      sinx— sina 



CHAPTER  II. 

FUNCTIONS.     DERIVATIVES.    DIFFERENTIALS. 

i8.  Function.  When  a  variable  quantity  depends  for  its 
values  upon  those  of  another  variable  quantity,  the  first  is 
said  to  be  a  function  of  the  second,  and  the  second  is  called 

the  variable  or  argument  of  the  first;  e.g.,  a:2-2x  +  l,  x^, 
log  (a+x),  sin  ax,  are  functions  of  the  variable  x. 

The  expression  f{x)  is  used  as  a  symbol  for  a  function  of 

X,  f{a)  being  the  value  of  the  function  when  x  =  a;  e.g., 
if  f(x)  =  l-x^  m  =  l,  /(1)  =  0,  /(2)=-3,  /(a)  =  l-a2. 

For  a  similar  purpose  F(x),  fix),  etc.,  may  be  used,  and 
fix,  y).  Fix,  y),  etc.,  for  functions  of  x  and  y. 
The  variable  of  a  function  may  itself  be  a  function  of 

another  variable,  or  it  may  be  an  independent  variable — one 
to  which  arbitrary  values  may  be  assigned. 

19.  Implicit  functions.  In  any  equation  containing  two 

variables  x  and  y,  e.g.,  ?/2  =  4ax,  log  ix-\-y)  =  2,  either  of  the 
variables  is  virtually  or  implicitly  a  function  of  the  other, 
or  an  implicit  function  of  the  other,  since  the  value  of  either 
is  determined  when  that  of  the  other  is  assigned.  If  we 
solve  for  y  in  terms  of  x,  y  becomes  explicitly  a  function  of 
X,  or  an  explicit  function  of  x. 

20.  Graphs.  The  curve  whose  equation  is  y  =  fix)  is  the 
graph  or  geometrical  representation  of  the  function  fix). 
The  ordinate  corresponding  to  any  abscissa  x  is  the  value 
of  the  function  when  the  value  of  the  variable  is  x. 

When  for  a  value  of  the  variable  there  is  only  one  corre- 
sponding value  of  the  function,  the  function  is  said  to  be 11 



12 INFINITESIMAL  CALCULUS. 

[Ch.  II 
single- valued.  Thus  e^,  Fig.  5,  and  log  x,  Fig.  6,  are  single- 

valued  functions.  The  function  sin~i  x,  Fig.  7,  is  multiple- 
valued.  It  will  in  general  be 
assumed  that  a  function  is 

single- valued;  when  such  is 
not  the  case  the  function  may 

be  treated  as  single- valued  by 
considering    a    limited    range 

of  its  values.     Thus  sin~^ 

single-valued    if     V9,lues 

and <  —  -  are  excluded. 

X  is 

>f 

The 

Fig.  6. 

ordinate  of  the  curve  y^  =  4:X 
is  a  double-valued  function  of 
X,  but  may  be  represented  by 

two  single-valued  functions^ 
2\/^and -2Vx. 

21.  Continuity.  In  general 
a  gradual  change  in  the  value 

of  a  variable  produces  a  gradual  change  in  the  value  of  the 
function,  but  it  is  possible  that  a  slight  change  in  the  variable 

may  produce  an  abrupt  finite  or  infinite  change  in  the  func- 
tion. In  more  precise  language,  fix)  is  continuous  for  the 

value  a  of  the  variable  when,  as  /i  =  0  {h  being  a  small  change 

£f(a-hh)=:£f{a-h)  =  f{a), 

and  discontinuous  if  this  relation  is  not  true. 

LetOA  =  a,BA  =  AC=h.  InFig.S, AP=f (a), CR==f (a -hh), 
BQ  =  l{a-h).  Also  as  A  =  0,  £CR==AP,  and  £BQ  =  AP, 
hence  the  ordinate  is  continuous  at  A.  But  in  Fig.  9, 

£CR=AP,  £BQ  =  AP';  these  are  not  equal,  hence  y  is  dis- 
continuous a.t  A.  In  Fig.  10,  BQ  becomes  infinite  when 

h^O,  and  y  is  discontinuous. 
When  the  function  changes  abruptly  from  one  finite  value 

to  another  finite  value  it  is  said  to  have  finite  discontinuity; 
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when  the  function  becomes  infinite  it  is  said  to  have  infinite 
discontinuity. 

B      A         X 

Fig.  10. 

Ex.  1.  fix) 
1 

has  finite  discontinuity  at  a;  =0.     For,  when 
2^+1 

h  ̂ 0,  £jih)=0  and  £f{—h)  =  \.  Thus  when  x  increases  through 
the  value  0  the  function  drops  suddenly  in  value  from  slightly 
less  than  1  to  slightly  more  than  0,  without  passing  through  the 
intermediate  values.  It  cannot  be  said  to  have  any  value  when 
x=0. 

2.  The  following  have  infinite  discontinuity  for  x  =  l: 

(x  +  l)/(x-l),     (x-1)-*,     3(1-^)"',     tan^TTX. 

3.  Examine  the  function  2^  for  a;=0. 

22.  Interval.  Values  of  the  variable  between  two  assigned 
values  a  and  h  are  said  to  lie  in  the  interval  from  a  to  6. 

The  interval  may  be  conveniently  indicated  by  [a,  h].  Re- 
versal of  a  bracket  indicates  the  exclusion  of  the  adjacent 

end  value;  e.g.,  [a,  h[  indicates  values  from  a  to  b,  including 

a  but  excluding  h.  Thus  {1—x^)^  is  real  for  the  interval 

[— 1,  1],  (l  —  x^)~^  is  continuous  for  the  interval  ]  — 1,  1[. 
23.  Increment.  Any  change  in  the  value  of  a  quantity 

is  called  an  increment  or  difference  of  that  quantity.  An 

increment  is  positive  or  negative  according  as  the  quantity 
is  increased  or  decreased.  The  symbols  Jx,  dx,  are  used 
for  increments  or  differences  of  x. 

24.  Derivative.  Let  there  be  a  variable  and  a  function  of 

that  variable.     A  particular  value  of  the  variable  being  x 
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let  the  corresponding  value  of  the  function  be  y.  Let  x 
receive  an  increment  Ax,  and  let  Ay  be  the  corresponding 
increment  of  y.  The  limit  of  Ay/ Ax  when  Jx  =  0  is  called 
the  derivative  of  y.  Thus  the  derivative  is  the  limit  of  the 
quotient  of  the  increment  of  the  value  of  the  function  by 
the  increment  of  the  value  of  the  variable  when  the  latter  in- 

crement is  infinitesimal.  The  primary  object  of  the  Infini- 
tesimal Calculus  is  to  determine  this  limit  for  various  kinds 

of  functions. 

Ex.  1.  liy'=x\  Ay  =  {x^-Axy-x^=2x  dx+{Ax)\ 
:.  Jy/Jx=2x  +  Jx.     :.  £{Jy /Jx)=2x  when  £Jx=0. 
Similarly,  if  y=ax^,  £{Ay/dx)=a  .2x,  a  being  any  constant. 
2.  If  y=ax^,  show  that  £{Jy/Jx)  =a .  3x^ 
S.  Uy=x,  Jy  =  Jx,     :.Jy/Jx  =  l,    or     £{Ay/Jx)  =  l     (§5). 
Similarly  if  ?/=  ax,  £{Jy/Jx)=a. 
4.  y=4x'-Sx^  +  2x-l. 
The  method  of  obtaining  Ay/ Ax  shows  that  the  result  will  be 

the  same  as  if  each  term  were  treated  separately  and  the  results 
added,  also  that  a  constant  term  disappears  in  subtracting. 

.-.  ;^( Jy/Jj)  =4. 3x^ -3. 2x  +  2  =  12^2 -6x  +  2. 
25.  The  general  method  illustrated  in  the  above  examples 

may  be  described  as  follows:  Let  y=f{x).  The  value  of  the 
function  for.  the  value  x-\-Ax  of  the  variable  is  f{x-\-Ax); 
hence  Ay,  the  increment  of  function,  is  f{x-j-Ax)  —  f{x),  and 

Ay_f(x-{-Ax)-f(x) Ax  Ax 

This  expression  is  simplified  and  its  limit  taken  when  ix=0. 
This  limit  is  the  derivative,  and  is,  for  various  values  of  x, 
a  new  function  of  x.  It  is  called  the  derived  function,  or 
derivative  function,  or  simply  the  derivative,  of  the  given 

function.  Let  it  be  written  f'{x).  Thus  if  f{x)  =  x^,  ]'{x)  =  2x; 
if  f(x)  =  as^,  j'  (x)  =  3ax2 ;   if  j(x)  =  x2  +  2ax,  /'  (x)  =  2  (x  +  a) . 

It  should  be  noticed  that  there  cannot  be  a  limit  (a  deriv- 

ative) unless  Ay^O  as  well  as  Ax;  i.e.,  unless  £f{x-\-Ax)  =  f{x) 
when  Jx-0,  or  (§  21)  unless  /(x)  is  continuous  for  the  value 
of  X  in  question.  ^ 
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o       cc         Ao; 
Fig.  11. 

26.  Geometrical  illustration.  Let  y=f{x)  be  the  equation  * 
of  a  curve  of  which  P{x,  y)  is  a 
point.  Then  Ay/ Ax  is  the  slope  or 
gradient  of  the  secant  PQ.  When 
Ax=0,  Q  approaches  P,  and  the  Hmit 
of  position  of  the  secant  is  (by  defi- 

nition) the  tangent  at  P.  Hence 
£(Ay/Ax)  or  f  (x)  is  tan  0,  the  slope 
of  the  tangent  at  {x,  y).  Thus  for 

the  curve  y^x^,  tan<}S  =  2a:;   for  y  =  x^,  tan  ̂   =  3x2. 
27.  Differential.  Def.  The  differential  of  the  variable  of 

a  function  is  any  increment  of  that  variable;  the  differential 
of  the  function  is  the  derivative  of  the  function  multiplied 
by  the  differential  of  the  variable. 

The  letter  d  is  used  as  an  abbreviation  for  ''the  differential 

of."  If  then  y  or  f{x)  is  a  function  of  x,  the  definition  states 
that  dx  is  any  increment  of  x,  and  that  dy  or  df{x)  is  f{x)  dx.'f 

Thus  dx  and  dy  are  defined  in  such  a  way  that  dy/dx  is  equal  to 
the  limit  of  Ay/Ax,  or  the  differential  quotient  is  the  limit  of 

the  difference  or  increment-quo- 
tient. 

Geometrically,  dy/dx  is  the 
slope  t  of  the  tangent  at  (x,  y), 

Fig.  12,  and  dy  is  the  increment 
of  the  ordinate  of  the  tangent 
corresponding  to  the  increment 
dx  of  the  abscissa.     It  should  be 

noticed  that,  although  dx  may  have  any  value,  the  value  of 
dy/dx  is  independent  of  dx. 

*  The  angle  between  the  axes  is  assumed  to  be  a  right  angle  in  all 
cases  unless  the  contrary  is  mentioned. 

t  From  its  position  as  a  multiplier  of  dx  the  derivative  f'(x)  is  also 
called  t  e  differential  coefficient  oi  f(x). 

t  If  the  angle  between  the  axes  is  oj,  dy/dx ^ein  ̂ /sin  (w— <^). 



CHAPTER  III. 

DIFFERENTIAL  OF  A  POWER,  A  PRODUCT,  AND  A  QUOTIENT. 

28.  The  operation  of  obtaining  derivatives  or  differentials 
is  called  differentiation. 

We  now  consider  a  few  general  formulae  which  will  assist 
in  differentiating,  first  showing  that  the  differential  of  the 
algebraical  sum  of  any  finite  number  of  terms  is  equal  to 
the  algebraical  sum  of  the  differentials  of  the  terms;  also 
that  a  constant  factor  in  a  term  appears  as  a  factor  in  the 
differential  of  that  term,  and  that  a  constant  term  dis- 

appears in  differentiating,  or  has  0  for  its  differential. 

Let  y=au+v  —  w+c,  where  u,  v,  w  are  continuous  func- 
tions of  X,  and  a  and  c  are  constants.  Let  the  increment 

Jx  in  X  cause  increments  Ju,  Jv,  Aw  in  u,  v,  w,  Ay  being 
the  resultant  increment  of  y.     Then 

Ay = {a{u + Au)  -\-{v  +  Av)  —  (w+Aw)  +c]  —  (au  +v  —  w  +c) 
=  a  Au+Av  —  Aw. 

Ay _  Au     Av    Aw 
'  '  Ax      Ax    Ax     Ax 

Hence,  taking  the  limits  when  Jaj  =  0, 

dy      du     dv    dw  ,  ,        ,       , 
-p=a— +— -— ,     or    dy=adu+dv-dw. dx       ax    CLX     ax 

.'.  d(au-\-v  —  w+c)  =  adu+dv  —  dw. 

29.  Differential  of  a  power.  Let  r  be  a  function  of  x,  to 

find  d(y"),  n  being  any  constant.     Let  y=v^.    Then 

16 
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Taking  Jv\<\v,  expanding  by  the  binomial  theorem,  and 
dividing  by  Jx, 

Jy 

Jx Ax\        1.2    -y  / 

Taking  the  limits  when  Ja;  =  0,  and   .*.  Av  also  =  0, 

dy        „  -i  dv 

dx  dx' 

or  d{v^)  =  nv^~^  dv.  (A) 
This  result  is  true  for  all  values  of  n.    The  case  in  which 

n  =  i  deserves  special  mention;    (A)  then  becomes 

d(,Vv)  =  ̂ -.  (B) 

When  n=  —  1,  (A)  becomes 

Ex,  1.  d{x'^)=5x*dx. 
2.  d{Sx^-\-2)=3d{x^)  =  15x*dx. 
3.  diSxJ_-2x'-{-Q)=SAx'dx-2.2xdx=4x{Sx'-l)dx. 

4.  di/x'=d{x"^)=^x-idx. 
/  1  \  2  dx 

5.  d(-)  =d{x-')  =  -2x-'dx=   -. \a:V  x^ 

6o  d(a'+x'y=S{a'-{-x'y  dia'+x') 

=3(a2+a;2)2  2xdx=Qx{a^+x'ydx. 

In  this  example  v  =  a^  +  x^,  and  n=S,  a  being  constant. 

7.  rfl   r    =   d{a-x)=-—-T. 
\a—b/      a—b  a  —  o 

8    d—=J===i=d{ax  +  bx')-^ 
V{ax  +  bx^y 
=  -l{ax-\-bx  )-=-!  diax  +  bx')=  -Uax  +  bx')-Ha  +  2bx)  dx. 

9.  dVa^  -x^  =  «:v--_^  ̂      (3)^  ̂         
2\/a^-a:'  2Va2-a;2         Va^ 

^^       /     1     \  dia'-x'),      .^.         2xdx 
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30.  Differential  of  a  product.    Let  y=uv,  where  u  and  v 
are  functions  of  x.     Then 

Ay=  {u-\-Au){v-\-Av)—uv  =  v  Ju+u  Jv+Ju  Av. 
Ay _  Au      4l.M/t  ̂  

'  '  Ax      Ax      Ax         Ax 
The  limit  of  the  last  term  is  0. 

dy      du       dv 
dx      dx       dx 

or d(uv)  =  vdu  +  udv. 

iP) 

Similarly, d(uvw)  =  vw  du  -\-vm  dv  -\-uv  dw. 
(Ci) 

Ex.  d(4a;+3)(a;2-l)  =  (x2-l)d(4x  +  3)  +  (4a:  +  3)d(a:2-l) 
=  (a:2-l)4rfa:  +  (4a;  +  3)2xdx=2(6x2  +  3x-2)da:. 

31.  Differential  of  a  quotient  or  fraction.     Let  the  frac- 
tion be  u/v,  u  and  v  both  being  variable.     Then 

Hence  d(^)=2^^^^9^.  (D) 

EX. .(:-:-;)  =^ 

v^ 

)d
{x
''
-\
)-
{x
''
-\
)d
{x
^ 
 

+  l) 
   

  

Ax
dx
 

Examples. 

1.  d{a^ -x^y  = -Q^x{a^ -x^Ydx. 

2.  d\/lVx''=xdx/Vl-\-x\ 

3.  If  /(x)=ax'  +  26j  +  c,  /'(x)  =2(ax-h6).* 

4.1/  =  Var'-a',  dt//da;  =  3xV2Vx'-a'. 
5.  d[ax(x'-l)(a:  +  l)]  =  a(x  +  l)(4x2-x-l)da;. 

•      W-t-l/  "(x^  +  1)'' 
7.  d(l+a:)\/l-x  =  (l-3x)dx/2vT^. 

*/'(^)-d/(a;)/cia;,  §27. 

6 
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8.  y  =  S{a  +  bx')',  dy=10bx{a+bx')Ux. 

9.  i/=  Va2  +  {b-xY,  dy={x-b)dx/Va'  +  {b -x)\ 

10.  y={a'-x')-\  dy/dx  =  3xy{a'-x')\ 
11.  y  =  x^/{a+xy,  dy/dx=iSa+x)xy{a+xy. 

12.  y=\^a^-x^,  dy=  —xdx/\^a^-x^. 

13.  y=\^2ax-x^,  dy={a—x)dx/\^2ax-x^. 

14.  y  =  x'/{a^-x'),  dy/dx=  {Sa'-x')x'/{a^-x^)\ 
15.  d[x^/{l  +x)^]  =  nx^-'  dx/{l  +x)^+  K 
16.  d{a'-x')-'  =  2xdx/{a'-x'y. 

17.  y^xy^/lTx*,  dy/dx=2x/{l+x')'. 
18.  y  =  {x-a)/Vx,  dy/dx  =  ia  +  x)/2Vx^. 

19.  y=ax/^2ax—x^,  dy/dx=a^x/{2ax-x^)^. 

(a— a:)Va^— x^ 
21.  2/=2a:/Va2  +  x2,  dy  =2a2  c^x/Ca^  +  x^)!. 

22.  t/=a:(a2  +  a:2)v'a2_^2^  dy/dx  =  {a'-\-a''x'-4x')/\/'aF^. 
23.  /(x)  =\/x  +  vT+P,  /'(x)=Vx  +  vrT7v2vT+^^ 

24.  —  +  -^-  =  1 .     Differentiating  each  term, 

2xdx     2ydy_     •    .    dy  _     ¥x 

25.  y^=4:ax,  dy/dx  =  {a/x)^=2a/y. 
26.  x'y-\-b'x-a^y=0,  dy/dx  =  {b^-]-2xy)/{a'-x'). 
27.  x^-\-y^=Saxy,  dy/dx= —ix^—ay)/{y^-ax). 
28.  x^y—xy^=a^,  dy/dx  =  {y^—2xy)/{x^-2xy). 

29.  If  2/=i  show  that  — ^  +  --iL=0. 



CHAPTER  IV. 

TANGENTS  AND  NORMALS. 

32.  Let  P  and  Q  be  two  points  near  one  another  on  a 
curve  of  which  the  equation  is  given.  Let  the  coordinates 

of  P  be  {x,  y),  then  x=OA,  y=AP.     When  x  has  the  in- 
Y 

J\ 
/ 

F 
  ^ 

^ C 

^ 
-^ 

Fig.  13.  Fig.  14. 

crement  Ax  or  AB,  the  new  value  of  y  is  BQ,  hence  CQ  is  Ay. 

Let  the  tangent  at  P  make  an  angle  0  with  the  a:-axis.  Then 
as  in  §  26,  when  Q  approaches  P  as  a  limit  of  position,  Jx=0, 
and 

tan  <;&  =  £  tan  CPQ={,{Ay/Ax)==dy/dx. 

Let  the  length  of  the  curve  measured  from  some  point  up 
to  P  be  8,  and  let  the  length  of  the  arc  PQ  be  As,  and  the 
length  of  the  chord  PQ  be  q.     Then 

cos  <t>  =  £  cos  CPQ  =  £{Ax/q)  =  £{Ax/ As)  (§17)   =dx/ds. 

Similarly,  sin  (f)  =  dy/ds. 

Thus,         cos95>  =  ̂(l),    sin9^  =  ̂    (2),    tan0=^^    (3). 20 
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Squaring  (1)  and  (2)  and  adding, 

21 

or ds^  =  dx^-hdy^. 

Fig.  15. Fig.  16. 

These  relations  show  that  if  dx  is  PD  (Figs.  15,  16),  dy 
is  DE,  and  ds  is  PE. 

dx  d^ 
33.  The  subtangent  TA^y-z-,     the  tangent  f  TP=y—, 

dij  ds 

the  subnormal  AN  =  y  -^,     the  normal  NP  =  yj-. ax  ax 

The  intercepts  of  the  tangent  on  the  axes  are 

OT  =  x-y~,     0S=  -OT  tan  cj>  =  y-x^. 
dy  ^     ̂         dx 

Also,  ?/-2/i=   (^)/^-^i) 

is  the  equation  of  the  tangent,  and 

*  Powers  of  a  differential  dx  are  written  dx^,  dx^,  etc.  They  must 
be  distinguished  from  d{x^),  d{x^),  etc.,  which  are  differentials  of 
powers  of  x. 
fThe  line-segments  known  as  the  tangent  and  normal  are  the 

portions  of  the  tangent  and  normal  which  join  the  a;-axis  to  the  point 
of  contact. 
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the  equation  of  the  normal,  at  a  point  whose  coordinates 

are  (xi,  yi),  the  parentheses  (  )i  indicating  the  particular 

value  which  the  enclosed  quantity  has  when  xi  and  2/1  are 

substituted  for  x  and  y. 
It  will  be  convenient  to  take  dfx  as  +,  i.e.,  measured  in 

the  +  direction  of  the  x-axis,  and  to  suppose  ̂   to  be  a 
positive  or  a  negative  acute  angle;  hence  cos  0  and  ds  are 

always  + ,  and  sin  (j>  and  tan  <^  have  the  same  sign  as  dy. 
It  should  be  noticed  that  the  curve  rises  or  falls  {y  increases 

or  decreases)  according  as  d?/  is  +  or  — . 

Examples. 

1.  The  curve  a''y=x{x^-a''),  Fig.  17. 
Differentiating  we  have  tan  ̂   =dy/dx  =  {3x^  —a^) /a^. 

At  the  origin  x=0,     .*.  tan^=— 1     and     .*.  ̂ =—45°. 
AtAorB,x=±a,     .*.  tan<^=2     and     <j5.=63°26'. 

When  a:=±a/V^,     tan  ̂ =0,     .'.^=0. Y 

Fig.  17. Fig.  18. 

The  equation  of  the  tangent  at  any  point  (x„  2/1)  is 

/Sx,'-a\.  . 

2.  Thfe  common  parabola  y^=4ax. 

Differentiating  each  term,  2y  dy=4adx,    .'.  dy/dx=2a/y. 
•*•  2/-2/i  =  (2a/2/i)(a;-x,)  is  the  equation  of  the  tangent  at 

i^i,  2/1),  and  reduces  to  2/,!/=2a(a;  +  a;,).  The  subnormal  =2/ rf?//^^^ 
=2a,  a  constant. 

3.  The  equation  x*  +  2/*  =a*  represents  an  astroid,  or  four-cusped 
hypocycloid  (Fig.  18),  i.e.,  the  locus  of  a  point  in  the  circum- 
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ference  of  a  circle  which  rolls  inside  the  circumference  of  a  fixed 

circle,  the  diameter  of  the  latter  being  four  times  that  of  the  former. 

Differentiating  the  equation,  we  get  |x~*  dx-\-^y~i  dy=0,  whence 
dx/dy  =  —  {x/y)^.  The  intercepts  of  the  tangent  on  the  axes 
will  be  found  to  be  a*  x^  and  a*  y^.  Squaring,  adding,  and  taking 
the  square  root  we  find  that  the  part  of  the  tangent  intercepted 
between  the  axes  is  of  constant  length,  viz.,  a.  Hence,  if  a  straight 
line  of  length  a  slide  with  its  extremities  on  two  given  lines  at 
right  angles  to  one  another,  it  will  constantly  touch  this  curve. 

4.  To  find  tan  ̂   at  any  point  of  the  curve  x^y  —xy^  =2. 
Differentiating  each  term  by  (C), 

x^  dy  +  2xy  dx  —  2xy  dy—y^dx=0, 

:.  dy/dx^{y^-2xy)/{x^-2xy). 

5.  Find  the  equations  of  the  tangents  at  the  points  (—1,  1), 
(2,  1)  on  this  curve.  Ans.  x—y-\-2=0,  x=2. 

6.  Of  the  rectangular  hyperbola  xy=k'^  show  that 
(1)  the  equation  of  the  tangent  at  (x^,  yC)  is  x/Xi-Yy/yi=2f 
(2)  the  equation  of  the  normal  at  {k,  k)  is  y=x, 
(3)  the  subtangent  always  =  —the  abscissa, 
(4)  the  tangent  makes  with  the  axes  a  triangle  of  constant 

area,  viz.,  2¥. 

7.  Show  that  the  tangent  to  the  curve  {x  +  aYy^a^x  is  parallel 
to  the  axis  of  x  when  x=a,  perpendicular  to  it  when  x=  —a,  and 
that  the  tangent  at  the  origin  bisects  the  angle  between  the  axes. 

8.  Find  the  equations  of  the  tangent  and  normal  at  the  point 

(a,  a)  on  the  curve  ay^^x^.        Ans.  3x-2y=a,  2x  +  3y=5a. 
Also  show  that  the  subtangent  =  fa,  the  subnormal  =  fa,  the 

tangent  =  ̂ aVl3,  the  normal  =^aVl3. 

9.  On  the  curve  x^y  +  b^x=a^y,  show  that  tan  <f>^¥/a^  when 
x=0,  206V9a2  when  a;=K  and  56V9a'  when  x=2a. 

10.  Show  that  the  curves  y{4:-\-x'^)=S,  4y=x\  intersect  at  an 
angle  tan-^  3. 

11.  Find  the  equations  of  the  tangents  of  the  following  curves 
at  the  given  points : 

(1)  xy  =  l+x''at  (1,2).  Ans.  x-y  +  l=0. 

(2)  x'  +  y'=x'  at  (2,  2).  2x-y=2, 

(3)  a:»  +  i/"=x«+^  at  (2,  2).  {n-{-2)x-ny=4. 
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(4)  a^y=x^  at  (a;,,?/,)-  Zxi^x—a^y=2xi^. 
(5)  y'=Sx+l  at  {x,,y,).  3x-2y,y  +  3x,-[-2=0. 

12.  4a:?/=4  +  x';    show    that  at   (2,   f)  the  subnormal  =  I,   the 
subtangent=2,  the  normal  =V,  the  tangent  =  I. 

13.  y^=Sx+l;    show   that   when  ?/=— 4  the  subnormal  =  I, 

the  subtangent  =¥,  the  normal  =  -^73,  the  tangent  =jV73. 
14.  x*  +  ?/*=a*,  Fig.  18;  show  that  ds  =  {a/x)^dx. 
15.  Find  an  expression  for  the  length  of  the   perpendicular 

from  the  origin  on  the  tangent  at  any  point  {x,  y)  of  any  curve. 
Arts,  {x  dy—y  dx)/ds. 

16.  In  the  case  of  the  parabola  y^=4:ax,  show  that  the  length 

of  this  perpendicular  =a:V'a/ (a +x). 



CHAPTER  V. 

DIFFERENTIALS   OF    EXPONENTIALS   AND    LOGARITHMS. 

34.  Differentials  of  the  exponentials  av  and  e^    Let
  a 

be  any  constant,  v  any  function  of  x.     Then      . 

=  a^[A  Jv  +  M^  i^'^y  +  ...],  A  =  loge  a, 

by  the  exponential  theorem,  the  series  being  c
onvergent  for 

all  values  oi  Jv. 

Jx  Jx 

and  taking  the  limits, 
<'(»')  =  4a.$!, 

dx  dx 

or  d{a^)  =  Aa^dv, 

When  a=6  =  2.71828  .  .  .  ,  A  is  1.     Hence 

d{e^)  =  e^  dv. 

Ex.1.  d(e3^)=e^^(i(3a:)=3e3^ci
:r. 

3.  d(2-^)  =  (loge  2)2-^ d{-x)^- (loge  2)2-^  dx. 

(E) 

(F) 

35.  Differentials  of  logarithms.  First 
 suppose  the  loga- 

rithms to  be  Napierian  (or  hyperbolic  or  natu
ral)  logarithms, 

the  base  being  e=2-71828  ...     Let  y=\oge  v,  ^^ 
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then                       v=ey,    :.  dv^e^dy^vdy, 

.*.  dy,    or    d{\og^v)  =  — . 
(G) 

Secondly,  let  the  base  be  any  number  a.    Then 

M  loge  V,  where  M=  1/logc  a,  or  =  loga  e, 

'.*    logaV  = 

.-.  d(\ogav)  =  M—, 
(Gi) 

M  is  the  modulus  of  the  system  of  logarithms  with  base  a. 
Unless  the  contrary  is  indicated,  the  logarithms  are  always 

assumed  to  he  Napierian. 

Ex.  1.  d  log  (ax')  =d{ax^)/ax^  =3  ax^  dx/ax^  =3  dx/x. 
2.  d{x  log  x)  =logxdx  +  x  d{\og  x)  =  (log  x-\-l)dx. 

36.  To  differentiate  u^,  where  both  u  and  v  are  variable 

quantities.  Let  y=u'^,  then  log  y=  (log  u)v;  hence,  differen- 
tiating, 

Ji=v   \- {log  u)dv,     .'.  dy^ylj)   t-(logw)c?vj 

.'.  d{u^)  =  vu^~^  du+ (log  u)u*  dv,  (G2) 

i.e.,  the  differential  is  obtained  by  supposing  u  and  v  in 
turn  to  vary  while  the  other  remains  constant,  and  adding 
the  results. 

37.  When  an  expression  is  made  up  of  factors  it  is  often 
simpler  to  take  logarithms  before  differentiating. 

Ex.  t/  =  (x+l)*(x  +  3)V(a:  +  4)S 

log  2/  =  i  log  (x  +  D  +  l  log  (x  +  3)-4  log  (x+4), 

dy    }__dx_    9__dx_         dx 

'y"2a;  +  l    2x+3~   a;  +  4' 
whence  dy. 
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Examples. 

2.  y=\og  (x/Vl  +  a;2)=loga;-ilog  {l+x'),_  dy=dx/{x-\-x'). 
3.  j{x)  =  '^x-\og{l  +  ̂ /x),     y{x)=^{l  +  'Vx)-K 

4.  d\og{x  +  '^x''±a'')=dx/^x^±a\ 
5.  2/=log[eV(l  +  e^)],     <ii/=c^a;/(l+e^). 

6.  2/=e^",    dy  =  ne^"x''-'dx. 

7.  dlog  (\/x-a+Va;-6)=^c^x/v'(a:-a)(x-6). 
8.  2/  =  a'°^^  =  (e^)  '*'^"'  =  (e^°«^)^  =x^     dy  =a  x^-^  da;. 
d.  diaf)  =  {l-\-\ogx)x^dx. 

10.  1/  =  1  +  xe^,     <ix  =  {2-y)  dy/ev. 
11.  y  =log  (?//x),     (1  -y)x  dy  =y  dx. 
12.  Differentiate    y=uv,    y=uvw,    and    y=u/v,    after    taking 

logarithms,  and  compare  the  results  with  formulae  (C),  (Ci),  and  (D). 

13.  Differentiate  i/=i;»  after  taking  logarithms,  thus  showing 

that  div^)  =nv^-'^  dv. 
14.  Show  that  the  subtangent  of  the  exponential  curve  2/=a^ 

id  constant  and  =logae. 

15.  Find  the  subnormal  of  the  curve  y^=a^  log  x. 
Ans.  a^/2x. 
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DIFFERENTIALS  OF  DIRECT  CIRCULAR  (TRIGONOMET- 
RICAL) FUNCTIONS.      • 

38.  To  differentiate  sin  v.  Suppose  v  to  be  a  function  of 

0.  Then  J  sin  v  =  sin  {y  +  Av)  —  sin  v  =  2  cos  {v  +  \Av)  sin  J Jr,* 

.     J^mv      .2cosv.JJi?       .j,^. 

•  •  ̂-ld~=^   Td   '    (^^^^ 
d  sin  v  (ii; 

.*.  d  sin  V  =  cos  V  dv.  (1) 

Similarly,  dcos  v=  —  sin  vffv.  (2) 

39.  The  differentials  of  the  remaining  functions  may  be 
found  by  first  expressing  them  in  terms  of  sine  and  cosine 
The  results  with  (1)  and  (2)  above  are:  t 

d  sin  V  =  cos  V  dv,  (H) 

d  cos  V  =  —  sin  V  dv,  (I) 

d  tan  V  =  sec^v  dv,  (J) 

d  cot  v  =  —  cosec^v  dv,  (K) 

d  sec  V  =  sec  v  tan  v  dv,  (L) 

d  cosec  V  =  —  cosec  v  cot  v  dv.  (M) 

♦  Since  sin  A  —sin  Ji  =  2  cos  i(i4  +  B)  sin  i(A— 5). 
t  To  these  results  may  be  added: 

d  vers  v  =  rf(l— cos  v)=sin  v  dv, 
d  covers  v=d(l  —sin  v)=  —cos  v  dv. 

28 
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Examples. 

1.  d  sin  nO  =ccis  nd  d{nd)  =n  cos  nd  dO. 

2.  d  sin  (tan  6)  =cos  (tan  d)  ditam  d)  =cos  (tan  6)  sec'i?  cZ^. 
3.  2/=tan  ̂ -(9,     dy=tsin^ddd. 
4.  d(i^-isin2^)=sin^^(/^. 
5.  rf(i^  +  i  sin  2^)  =  cos^^  c^^. 
6.  d{sec  /?  +  tan  ̂ )  =  (1  +  sin  ̂ )  rf^/cos'  d. 

7.  2/=i  tan^x— tan  x  +  a:,'   6?^/ =  tan^x  rfx. 
8.  fix)  =sin  X  —J  sin^x,     /'(x)  =cos^x. 
9.  d(sin^x  cos'x)  =^  sin  4x  d!x. 

10.  2/=  log  tan  ̂ (?,     dy  =  cosec  6  dO. 
11.  2/=logtan  (i;r  +  ̂^),     dy=secddd. 
12.  d(sec  ̂   +  log  tan  Id)  =sec^^  cosec  0  dd. 

/    sin  X    \  _(cos^x— sin^x)c?x 

\l+tanx/       (sin  x  +  cos  x)2  *  '^ 
14.  /(x)  =sin  (log  x),    /'(x)  =x-^  cos  (log  x). 
15.  de^  cos  X  =  e^  (cos  x  —sin  x)  dx. 
16.  d  log  sin  ̂   =cot  6  dd. 
17.  rflogcos(9=-tan^6i^. 
18.  d  log  tan  ̂   =sec  6  cosec  (?  dO. 
19.  c^  log  sec  /9=tan  ̂   c?^. 

20.  d  log  (sec  (9  + tan  6)  =sec_djd. 
21 .  2/  =  log  Vsin  X + log  Vcos  x,     dy/dx  =  cot  2x. 
22.  2/=2/(H-tan^x),     dy/dx= -1/ {I -\- sin  x). 

23.  ci  logV  (1  -cos  ̂ )/(l  +  cos  ̂ )  =  cosec  6  dd. 
24.  d  sin  n/9  sin»i9  =  n  sin"-^^  sin  (n  +  1)  ̂  dd. 
25.  By  differentiating  sin  2^  =2  sin  cos  d,  show  that 

cos2^=cos2^-sin2<9. 

26.  The  cycloid.     This  is  the  curve  traced  by  a  point  in  the 
circumference  of  a  circle  which  rolls  along  a  straight  line,  Fig.  19. 

Let  ̂ =the  angle  through  which  the  circle  (of  radius  a)  rolls 
while  the  tracing-point  moves  from  0  to  P. 

Then 

x  =  OM  =  OB-MB=arG  PB-PD  =  ad-asm  d, 

y  =  MP  =  BC -DC  =  a-a  cos  d. 

From  these  two  results  d  may  be  eliminated;  but  as  the  result- 
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ing  equation  is  not  algebraical  we  shall  suppose  the  locus  deter- 
mined by  the  simultaneous  equations 

x=a{0  —sin  0),     y=a{l  —cos  0). 

o  M 

Fig.  19. 

For  a  single  arch  of  the  curve  0  varies  from  0  to  2?: ;  for  greater 
or  smaller  values  of  0  the  curve  is  repeated  indefinitely  in  both 
directions. 

Produce  BC  to  meet  the  circle  in  E,  then  PE  is  the  tangent 
and  PB  tke  normal  at  P.    For 

dx  =  a{l  -cos  6)  de=BD  dd,    dy  =a  sin  edd=DP dd, 

.'.  if  the  tangent  makes  an  angle  <f>  with  the  axis  of  ar, 
tan  cf>=dy/dx=DP:BD=tsinDBP  =  tsLn  DPE, 

BPE.  an  angle  in  a  semicircle,  being  a  right  angle.     Therefore  PE 
is  the  tangent.     Hence  at  each  instant  the  circle  may  be  supposed 

/
^
 

\y 
7 ^ \ 

Y^ 
k K ix (\^ 

^\ 

( 
r 
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X 

20. 

to  be  turning  about  its  lowest  point  as  an  instantaneous  centre 

of  rotation." 
Since  CE=CP,CEP=iO,  /.  the  normal  PB  =  2o  sin  J  ̂. 
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27.  If  the  axes  of  the  cycloid  be  taken  as  in  Fig.  20,  its  equa- 
tions are 

a;=a(l  — cos  ̂ ),     y  =a{d-{-sm  6), 

6  being  the  angle  through  which  the  circle  has  rolled  from  R. 

The  locus  of  Q  (of  D  in  Fig.  19)  is  called  the  "companion  to 
the  cycloid."     Its  equations  are 

x  =  a{l  —cos  0),     y  =ad. 

Show  that  in  this  curve  tan  0=cosec  d,  and  hence  that  4>  is  least 
when  x=a. 

28.  At  any  point  of  the  cycloid,  show  that 

dx    Ni y  y 

dy        l2a_^y2a.-x^     Rg.  20. dx      y  X  X 

29.  In  the  cycloid,  Fig.  20,  show  that 

ds/dx  =  V{2a)/x, 
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V 

40.  To  differentiate  sin-i  -,  the  radian  measure  of  the Ci 

angle  whose  sine  is  v/a,  a  being  a  constant. 
V 

Let  i/=sin~i  — ,  then  v=a  sin  y. 

I       t^  /   
.'.  dv=a  cos  ydy=a^l — ^dy=Va^  —  v^  dy.     .*.  dy  or 

V        dv  ̂   dv 
rfsin~^-=    .  (N),    or     dsm~H=    ,  ,     if    a=l. 

Similarly, 

a  cos  1 -=    (Ni),   or   a  cos  ̂ 1;=   ,  ,  if  a=l: 
a        Va^-v^  Vl-v^ 

jj^       .  V      adv     .^.  J  X     -1         ̂ ^         e 
fltan~^-=  o  .    o  (P);     or      a  tan  ̂ ^  =  7- — 5,     if    a=l: 

dcot~^-=  -0,0  (Pi),     or     (i  cot  ̂ i;=  -.,  ,    9,    if    a=l; 

dsec  1-=  — .  (Q),    or     a  sec  iv=  — ,  ,    if    a=l; 

J            1  V             ct  (fv        .^  .              J          _,  dv 
acosec~i-=   .  (Qi),    or    a  cosec  11;=   ._       , 

if    a=l. 

♦This  formula  should  be  preceded  by  a  minus  sign  if  cosy  is  — , 
i.e.,  if  the  angle  is  a  seeon^l  or  third  qiadrant  angle  (see  Fig.  7).  The 
f  rmulse  as  given  may  be  supposed  to  apply  only  to  first-quadrant  angles 

32 
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1.  dsin-'  (2x')  = 

Examples. 

d{2x')  4a;  dx 

r.    j/i      ̂        1   \     dtsLR-^x  dx 2.  a  (log  isLn-^x) 
tan-  ̂ x      (1  +  x^)  tsLii-^x 

3,  d  sin-' 30;^=—-==..  4,  d  cos-' —  = 

^     ,   .     ,x-a  a  c?x  ^     ,         .a—x  dx 
5.  a  sin-'   =  — ,  6.  d  cos" 

^       x\/2ax-a2  a        V2ax-x 

_   x^       2x  dx  dx 
7.  d  sin   '  -—  =  —  .  8.  d  tan-'e^ 

a'     Va'  -X*  e^+e-^ 

9.  d  sec-'  vT+x'  =dx/{l  +x'). 

10.  dtan-'  {VTTx'  -x)  =  -^dx/{l+x^). 

11.  dsin-'  (a:/VlTx^)=(ia;/(l+a;2). 
12.  d  sin-'  [(1  -a;2)/(l  +a;2)]  =  -2dx/{l  +x'). 

13.  dtan-'[2a;/(l-a;2)]^2^^/(l+x2). 
14.  d  sin-'  Vsin  x  =  ̂  Vl  +  cosec  x  dx. 

ir    J  i^      ̂   1  /i      ̂ \  ^^ 
15.  a  vers-'  — =«  cos-'  (1   j 

16.  d  sin 

a  \       a/      \/2aa;-x' 
dx 

m-'  V   7   
yib—a 2\/{x-a){b-xy 

17.  2/=asin-'  {x/a)-{-^/a'-x',    dy=dxV{a-x)/{a-]-x). 

18.  ̂   =  V'x2-a2-asec-'  (a:/a),     dy=dxVx'-ayx. 

19.  2/=^tan-'x-log  Vl+x^     dy  =ta.n-^x  dx. 
.       1  ^  J       (l  +  a:)rfa; 

20.  2/=tan-'x+log^==,     ̂ 2/=^^^^ 

21.  2/=logv  —   htan-'-,     -i-=—. — -;• 
Nx  +  a  a      dx    x*-a* 



CHAPTER  VIII. 

DIFFERENTIALS  OF  HYPERBOLIC  FUNCTIONS. 

41.  Def.    The  quantities  iie^—e~^),  J(e^  +  e"^)  are  called, 

Fia.  21. 

respectively,  the  hyperbolic  sine   (sinh  x  *)  and  hyperbolic 
cosine  (cosh  x)  of  x.    The  hyperbolic  tangent  cf  x  is  defined 

*  This  may  be  read  "sine  h  of  x. 
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to  be  sinh  x/cosh  x,  and  the  hyperbolic  secant,  cosecant, 

and  cotangent  to  be  the  reciprocals  of  the  cosine,  sine,  and 

tangent,  respectively. 
The  graphs  of  the  functions  are  represented  in  Fig.  21. 

Observe  that  sinh  x  may  have  any  valuo,  cosh  x^  \, 

tanha:>-l  and  <1,  cotha;>l  or  <-l,  etc.,  sinh 0  =  0, 
cosh  0=1,  etc. 

The  fundamental  relations 

cosh^a;  —  sinh^x  =  1 ,     sech^a;  =  1  —  tanh^x, 

cosech^x = coth^a;  —  1 , 

are  easily  verified. 

The  differentials  of  the  hyperbolic  functions  are  similar  to 

those  of  the  circular  functions.  Only  the  most  important 

are  given  here.     (For  the  others  see  Appendix,  Note  C.) 

Differentiating  sinh 'y=i(e^-e"^);  cosh  i;  =  i(e^+e~^);  we 
have 

dsinh  v  =  Go^h.vdVj 

d  cosh  V  =  sinh  v  dv, 

whence  may  be  deduced 

d  sinh"^-  = 

d  cosh  1  -  = 

^    .  V      adv  ,  ̂ , 

dtanh-i-  =  ̂ 23^,  v\<\a, 
,    .  V       a  dv  I .   , 

dooth-^-'=^^,  v\>\a. 

Examples. 

1.  y=logcosha;,    dy/dx  =ianhx 

X  X      J      dx    \x  +  a 

2.  y=sec--+cosh-'-,    dy'-\j^^- 
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3.  y=xVa^  +  x^-{-a^sinh-' (x/a),    dy/dx=2\/a^+z\ 

4.  Show  that      sinh-*—  =log{   1, a  \  a         / 

tanh-*-  =-  log  (^—} . 
a     2      °  \a—x/ 

[Let  sinh.-^  x/a=z  and  e^=u.  Then  x/a  =sinh.  z  =  ̂ {u—u-^). 
Solve  for  u  in  terms  of  x.] 

5.  Gudermannian.  If  a:  =  log  tan  (^7:  +  ̂^),  or  log  (sec  ̂   + tan ^), 

0  is  called  the  gudermannian  of  x  (gd  x)  and  x  is  gd-*^.*  Prove 
that 

dgd  x=sechxdx, 

dgd-^x=8ecxdx. 

[Differentiate,         gd  a;  =  2  tan-^e^ — ^tt,    and 
gd-*x  =log  (sec  a;  +  tan  x).] 

6.  If  x=log  (sec  ̂ +tan  6),  prove  that 

cosh  X  =sec  d,    sinh  a;  =  tan  6^    tanh  x  =  sin  $, 

*  The  inverse  gudermannian  gd-^^  is  also  written  ̂ (^),  i.e., 
yl(^)  =  logtan  (i;r+i^)  =  log  (sec  (9+tan  6). 



CHAPTER  IX. 

DIFFERENTIALS  AS  INFINITESIMALS. 

42.  Let  y  he  SL  function  of  x,  dx  an  increment  of  x,  and 
suppose  y  and  its  derivative  to  be  continuous  from  x  to 
x+dx.  Let  Jy,  dy,  be  the  increment  and  differential  of  y 
corresponding  to  dx.  Let  dx 
become  smaller  and  smaller  and 

-  0,  then  Jy  and  (in  general)  dy 
are  also  infinitesimals.     Since 

y    dy      ,    Ay    dy 

Tx^    "Tx  =  Tx^'^    ̂ ^^^ 

'dx 

where  i  is  infinitesimal.     Hence 

Jy  =  dy  +  I,  (1) 

where  I  is  an  infinitesimal  of  an  order  higher  than  that  of 
dx  and  dy. 

If  dyT^O,  l/dy  =  0,  and  /  becomes  a  very  small  part  of  dy. 
Hence  dy,  when  very  small,  is  a  close  approximation  to  Jy. 
In  reality  (1)  implies  that  dy  is  what  remains  of  Jy  when 
the  higher  infinitesimals  are  omitted;  in  other  words,  if 
higher  infinitesimals  are  left  out  of  account  dy  may  be  used 

as  if  it  were  the  increment  of  y  corresponding  to  the  incre- 
ment dx  of  X. 

li  y=j{x),  (1)  may  be  written 

/(x + dx)  -  fix)  =  f  {x)dx + /,  (2) 

where  I/dx  =  (),  and  hence  /  is  a  very  small  part  of  dx  when 
dx  is  very  small. 
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[Oh.  IX 
43.  Differentiation  by  the  omission  of  the  higher  infini- 

tesimals is  much  used  in  the  practical  applications  of  the 

subject,  and  may  be  illustrated  by  the  following  examples. 

It  must  be  remembered  that  dx  is  now  regarded  as  infiiji- 
tesimal,  and  that  the  higher  infinitesimals  are  not  omitted 

because  they  are  of  trifling  numerical  value,  but  because 

they  do  not  affect  the  final  limit  expressed  by  dy/dx.  (See 

§  17.)    The  result  is  in  no  sense  an  approximation. 

Ex.  1.  If  2/=x»,  Ay^{x-\-dxy-x^ 

=x'^-\-nx'<^-^dx-\-.  .  .—x'^=nx'^-^dx^-.  .  . , 

the  terms  indicated  by  .  .  .  being  higher  infinitesimals.    When 
these  terms  are  omitted  J  changes  into  d. 

.'.  dix^)=nx^-^  dx. 

2.  ?/=e^  Ji/=e^'^^-e^=e^(e^^-l)=e^(l+dx  +  .  .  .-1). 

.*.  dy=e^dx. 

3.  y=smx,      Jy=sm  {x-{-dx)—smx 

=sin  X  cos  dx  4-  cos  x  sin  dx  —sin  x. 

But  cosdx  =  l  +  /i,  smdx=dx-hh,    (§16). 

.* .  dy  =  cos  X  dx. 

4.  To  find  the  differential  of  the  area  A,  Fig.  23. 

Y 

Y 

A 

8 

P 

M 

Q 

y 

/ AV 

R 

N 

dx        X 
I 

FiQ.  23. 

For  the  increment  dx  of  x  the  increment  dA  of  the  aTesi  =  PMNQ 

=  PN  +  PRQ.  PN=y  dx,  and  PRQ  is  a  part  of  RS,  which  ==dx  Ay 

and  is  .*.  a  higher  infinitesimal. 
.*.  dA  =y  dx. 
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For  example,  for  the  curve  y=x'^,  Fig.  24,  dA  =x^dx,  hence  the 
relation  connecting  A  and  x  is  in  this  case  A  =^x^. 

5.  Barometric  msasurement  of  heights.  Let  Wq  be  the  weight 
of  a  cubic  inch  of  air  at  pressure  po*  Then  the  weight  of  a  cubic 

inch  at  pressure  p  is  (Boyle's  law)  Wop/po,  if  the  temperature  is 
the  same  as  before.  Of  a  column  of  air  of  uniform  temperature 
and  one  square  inch  in  horizontal  section  consider  the  portion 

between  sections  at  distances  x,  x-\-dx  from  the  top,  and  let  p, 
p-\-Jp  be  the  pressures  at  top  and  bottom  of  this  portion.  Then 
Jp  is  the  weight  of  this  portion,  dx  its  volume,  its  average  pressure 
>p  and  <p  +  Jp  and  is  therefore  p+i,  where  i  is  infinitesimal. 
Hence 

jnp  =  -2l£-   i  dx,     ..dp= — p  dx,    or    dx=   . 

Po  Po  '^0  P 

This  shows  that  the  relation  connecting  x  and  p  is 

a;  =  Pilogp  +  c,  (1) 

Wo 

where  c  is  a  constant.  Let  the  pressures  at  top  and  bottom  of 

the  whole  column  be  P„  P2,  and  h  the  total  depth.  Then  p=Pi 
when  x=0,  and  p  =  P2  when  x^h.  Substituting  in  (1)  and 
subtracting, 

The  values  of  the  constants  po  and  Wo  are  to  be  supplied  from 
experiment. 

M  SCELLANEOUS   EXAMPLES. 

1    t/    X  u     ̂ u  ̂ ^y    y'd  -log  ̂ ) 1.  x^  =y^,  show  that  7—  =  -jtz — ,  „  ,a  • 

2.  lix=e  y  ,  (iy/da;=loga:/(l+logx)2. 

_j  /6  +  acosa;\      Va^-b^  dx 
^*  ̂  ̂̂ ^  '  \a  +  b^osx)  ~  a  +  b  cos  x' 
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5.  Find  the  derivative  of  z  with  respect  to  tan  x. 

Arts,  cos'a:. 

6.  Find  thfe  derivative  of  sin- 'a;  with  respect  to  \/\—x}, 

An8,  —x~'^, 
7.  Differentiate  tan  x  directly.* 

8.  Differentiate  tan-*x  directly .f 

9.  If  /(I)  =log  (1^)  ,  show  that  /(x)+/(y)  =i[~^  ■ 

10.  If  (x— a)»  is  a  factor  of  /(x),  show  that  (x  — a)«-'  is  a  factor 
of  /'(x).    [Assume  /(x)  =  (x  -a)«F(x)]. 

Hence  explain  a  method  of  finding  the  equal  roots  of  an  alge- 
braical equation. 

11.  If  /(x)  contains  a  factor  (x— a)-^  which  causes  it  to  be 
infinite  when  x  =  a,  show  that  /'(x)  is  also  infinite. 

12.  A  function  /(x)  is  said  to  be  an  even  function  of  its  variable 

X  if  (/— x)=/(x),  and  an  odd  function  if  /(— x)  =  — /(x).  What 
are  the  geometrical  peculiarities  of  the  graphs  of  such  functions? 

Show  that  the  following  are  even  functions: 

cosx,    xsinx,     (e^-e-^)/x,    x/(e*  — l)  +  ix. 

Show  that  the  following  are  odd  functions: 

x"  sec  X,    tanh  x,    log  (sec  x+tan  x). 

13.  Show  that  cosh-^x  and  sech-^x  are  double-valued  func- 
tions. 

*  tan  A  —  tan /i  =  8in  (A  —  B)/cos  A  cos  5. 
t  tan-'m  — tan-'n=tan-'(m— n)/(l  +  mn). 



CHAPTER  X. 

FUNCTIONS  OF  MORE  THAN  ONE  VARIABLE. 

44.  Such  functions  may  be  differentiated  by  the  formulae 

already  given. 

Ex.  1.  u  =  {x-\-y^y.  Here  u  is  to  be  regarded  as  a  function  of  x 
and  y,  both  of  which  are  assumed  to  have  differentials.  We 
have 

du=S{x-{-y'y  d{x-\-y^)=Six  +  y'y{dx-]-2y  dy), 

:.  du=3ix-{-y^y  dx-\-Qyix-^y^y  dy, 

d(-) 

2.  w=sin-^  I  — I ,     du 

i-& 
ydx—xdy          dx  xdy 

y\/y^—x^      \/^2_^2     y\/y^  —x^ 

45.  Partial  differentials  and  derivatives.  It  will  be  ob- 
served in  these  examples  that  the  first  term  of  the  result  is 

what  we  should  have  obtained  if  we  had  differentiated  u  on 

the  supposition  that  x  alone  varied,  y  being  regarded  as  a 
constant;  let  this  be  written  d^u.  The  second  term  is  what 
we  should  have  obtained  if  we  had  differentiated  on  the 

supposition  that  y  alone  varied,  and  this  we  call  dyU.  Hence 
in  these  examples 

du  =  dxU-\-dyU. 
41 



42  INFINITESIMAL  CALCULUS.  [Ch.  X. 

The  same  thing  is  true  for  all  continuous  functions  of  two 
variables.  For,  if  we  differentiate  by  the  ordinary  methods, 

we  shall  in  every  case  get  a  result  which  may  be  written 

du'^M  dx  +  N  dy, 

where  M  and  N  may  contain  x  and  y,  but  not  dx  or  dy.  If 

dy  =  0,  the  right-hand  side  reduces  to  M  dx,  which  is  therefore 
diU,  the  differential  of  u  on  the  supposition  that  y  is  constant 

(i.e.,  dy=0)  while  x  varies.  Similarly  N  dy  is  dyU,  the  differ- 
ential of  u  on  the  supposition  that  y  alone  varies. 

.*.  du  =  dxU+dyU.  (1) 

The  differentials  dxU,  dyU  are  called  partial  differentials 

of  u  with  regard  to  x  or  y,  du  being  called  the  total  differ- 
ential of  u.  The  total  differential  is  therefore  equal  to  the 

sum  of  the  partial  differentials. 
Similarly  if  w  is  a  function  of  three  variables  x,  y,  z, 

du=dxU+dyU-\-dzU.  (2) 

It  should  be  noticed  that  formulae  (C),  (CO,  (D),  (G2)  are 
particular  cases  of  functions  of  two  or  more  variables. 

The  result  (1)  may  be  put  into  the  form 

du  =  ̂ dx+^dv,  (3) dx  dy 

which  brings  out  clearly  the  fact  that  the  coefficients  of 
dx  and  dy  are  the  partial  derivatives  of  u,  which  are  equal 
to  the  partial  differential  quotients.  The  subscripts  are 
usually  omitted,  (3)  becoming 

du=-r  dx-\--r  dy.  (4) 

dx         dy  ^  ̂ 
The  symbol  B  is  frequently  employed  to  express  partial 

differential  quotients  or  derivatives,  (4)  being  written  * 

♦  du/bx  may  be  read  "partial  du  by  dx*' 
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Ex.  1.  2^=sin  (x^-i-xy).  Differentiating,  first  regarding  x  only 
as  variable,  and  afterwards  regarding  y  as  the  variable, 

du/dx  =  cos  {x^  +  xy)  .  i2x-^y),     du/dy  =  cos  {x^  +  xy)   x. 
2,  u=x^-\-y^  +  z^—3xyz, 

du/dx=3{x^-yz),     du/dy=3{y^-zx),     du/dz=S{z^-xy). 

46.  If  u  =  jix,  y),  dx  and  dy,  being  differentials  of  the 
variables,  are  increments  of  x  and  y.  If  dx  and  dy  are  taken 

as  infinitesimal  increments,  du  is  not  the  same  as  Au,  the 

infinitesimal  increment  of  the  function.  Since  it  may  be 

obtained  by  the  ordinary  rules  of  differentiating,  du  is  Au 

when  the  higher  infinitesimals  are  omitted  (§  42),  or 

Au  =  du  + 1. 

Hence  when  dx  and  dy  are  very  small  du  is  a  close  approxi- 
mation to  Au. 

Examples. 

1.  u  =sin  {x^  —y^),     dxu  =2x  cos  {x"^  —y^)  dx, 

dyU=  —2y  cos  {x'^—y^)  dy. 

2.  u  =  {x-y)/{x-\-y),     du=^2{y  dx-x  dij)/{x  +  y)\ 
3.  u  =  {ax^  +  by'-\-cz^)^, 

n-l 

du=2nu  "•    {ax  dx  +  by  dy-{-cz  dz). 

4:.  li  tan  0=y/x,     (x^-^-y^)  dd  =x  dy—y  dx. 
5.  u  =xy,  dxU  =y  xv~^  dx,  dyu  =  (log  x)  xv  dy. 

: .  du=y  xv-^  dx-\-{\og  x)  x^  dy,  as  in  (G2). 

6.  it=log  (e^  +  e^),  du/dx  +  du/dy  =  l. 

7.  u  =  tsin-^{x/y),  du/dx=y/{x^-{-y^),  du/dy=—x/{x^-hy^), 
.       .  du  du 

8.  it=log  (tan  a:  +  tan  v),  sin  2x  —  +  sin  2?/ — =2. dx  dy 

9.  u=\ogy  X,  uxdu/dx  +  y  du/dy=^0. 
[Note,     logy  X  =log<  .x/logu  y.] 

10.  Given  x=r  cos  0,  y=r  sin  0,  show  that 

dx^-{-dy'-^dr^  +  r^dd\ 

X  dy—y  dx=r^  dd. 
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11.  (1)  If  a  function  u  consists  of  terms  such  as  ax'Py^,  and 
p+g  is  the  same  number  n  in  each  of  the  terms,  u  is  said  to  be 

homogeneous  and  of  the  degree  n.     Show  that  for  such  a  function  * 
bu  .    bu 

x--\-yr-'=nu. dx        dy 

(2)  If  u  =/(v)  and  v  is  homogeneous  as  defined,  show  that 

du      du  „,  . 

These  propositions  may  obviously  be  extended  to  functions  of 
three  or  more  variables.     Verify  in  the  case  of  Exs.  1  and  3. 

47.  Tangent  and  normaL  Let  f(x,  y)  =  c  (c  constant)  be 
the  equation  of  a  curve.  The  first  member  of  the  equation 

is  a  function  of  x  and  y;  calling  it  u  and  differentiating  the 

equation  we  have,  by  §  45  (5), 

-dx  +  ̂ ^dy==0,  (1) 

whence  dy/dx,  the  slope  of  the  tangent  at  {x,y),  is  — ;r- /^* 
Ox  I    oy 

Let  (xi,  ?/i)   be  the  point   of   contact   of   a   tangent   to 

the   curve,  (x,  y)  any  other  point  on  the  tangent.     Then 

x—xi  and  y—yi  are  proportional  to  dx  and  dy.      Hence, 
from  (1), 

Lb  the  equation  of  the  tangent,  and 

x-xa      y-yi 

\dx),     U//i 

(3) 

the  equation  of  the  normal,  at  (xi,  yi).     These  equations 
are  often  more  convenient  than  those  of  §  33. 

♦  A  particular  caae  of  Euler's  theorem  on  homogeneous  functions 
(Ex.  1,5  2.34). 



47.48.]  FUNCTIONS  OF  MORE  THAN  ONE  VARIABLE.   45 

Ex.  Find  the  equations  of  the  tangent    and  normal  at  the 
point  (a,  a)  on  the  curve 

x^-{-y^—2axy=0. 

du/dx=3x'-2ay=W-2a'=a'    for     (a,  a).   ■ 
du/dy=3y^-2ax=Sa^-2a^  =  a^    for     {a,  a). 

.'.  the  tangent  is   a^{x—a)  +  a^{y  —  a)=0,     or    x-\-y=2a, 

and  the  normal  is  — — -  =^— — ,     or    x=y. 

48.  Centre  of  a  conic.     Let  the  general  equation  of  a  conic 
be 

ax^  +  2hxy  +  hy^  +  2gx  +  2fy+c  =  0, 

or  ̂   =  0.     When  referred  to  parallel  axes  through  the  point 
{^1,  Vi)  the  terms  of  the  first  degree  are 

2{axi  +hyi  +g)x  +  2{hxi+byi  +})y, 

(S),-(l),- 
The  new  origin  is  therefore  the  centre    if    (  — j   =0   and 

Hence  the  centre  of  the  conic  is  the  intersection 

(i),=°- oi'du/'dx  =  Q  and  3w/3?/  =  0.  If  the  coordinates  of  the  point 
thus  found  satisfy  the  given  equation,  the  centre  is  on  the 
conic,  which  therefore  consists  of  a  pair  of  straight  lines. 

Examples. 

1.  Find  the  equation  of  the  tangent  at  any  point  of  the  curve 

(x/a)"»+(2//6)"*=2,  and  show  that  x/a-\-y/h=2  is  the  tangent  at 
the  point  (a,  6). 

2.  Show  that  the  length  of  the  perpendicular  from  the  origin 

on  the  tangent  at  {x,  y)  to  the  curve  u=c\s 

I  du      du\    I     I  /du\  2      ibu\  2 
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3.  In  the  case  of  the  curve  xJ  +  2/3  =a3,  Fig.  18,  show  that  this 

perpendicular  ='^axy. 
4.  In  the  case  of  the  parabola  (a;/a)i  +  (2//6)i  =  l,  show  that 

this  perpendicular  =[a6xz//(ax  +  62/]i. 
5.  Find  the  centres  of  the  conies 

(1)  a;'-4xi/-22/'+6y=2,  Ans.  (1,  i). 

(2)  18x»-8xt/  +  32/'+8x-6?/-5=0.  (0,  1). 

6.  Show  that  Zx'^-\-bxy—2y^—x+by=2  represents  a  pair  of 
straight  lines. 



CHAPTER  XI. 

SMALL  DIFFERENCES 

49.  When  the  differentials  of  the  variables  of  a  function 
are  small  increments,  the  differential  of  the  function  is  a 

close  approximation  to  the  increment  of  the  function  (§§  42, 
46). 

Examples. 

1.  Given  sin  30°  =i  cos  30°  =^^3",  find  sin  30°  1'. Here  the  angle  increases  by  a  small  amount  and  it  is  required 
to  find  the  small  increment  in  the  sine.     _ 

We  have  d  sin  6  =cos  Odd;  cos  ̂ =^^3,  rf^  =60/206265  rdn., 

.*.  d  sin  ̂ =-0002519,  .\  sin  30°  1' =-5002519,  which  is  correct  to 
the  last  decimal  place. 

2.  How  much  must  be  added  to  logio  sin  30°  to  get  logio  sin  30°  1'? 
We  have  d  log  sin  ̂ =cos  Odd /sm  ̂ ='0005038,  which  is  the  in- 

crease of  the  Napierian  log. ;  the  increase  of  the  common  log.  is 
obtained  by  multiplying  by  the  modulus. 

.-.  -0005038 X-4342945  ='0002188 

is  the  required  increment. 
The  difference  columns  in  the  mathematical  tables  are  found 

or  verified  in  this  way. 
3.  The  radius  of  a  right  circular  cone  is  3  inches  and  the  height 

is  4  inches ;  if  the  radius  were  '006  in.  more,  and  the  height  '003  in. 
less,  what  would  be  the  change  in  the  volume? 

The  volume  v=^7tr^h,    .'.  dv=^7:{2rh  dr  +  r^dh) 

=  j7r(2x3x4X-006-32X'003)='1225  cub.  in. 

4.  Assuming  that  the  radius  of  an  iron  ball  increases  by  '000011 
of  its  original  length  for  each  degree  of  temperature,  what  will 

47 
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be  the  increase  in  volume  of  an  iron  ball  of  8  in.  radius  when  the 

temperature  is  raised  25  degrees? 

The  volume  v  =J7rr',     .* .  dv  =4;rr^  dr 

"=47rX8»X25X-000011X8  =  1.77  cub.  in. 

5.  In  a  certain  triangle,  b  =445,  c  =606,  A  =62°  51'  33",  whence 
a  is  calculated  and  found  to  be  565;  it  is  then  noticed  that  A 

should  have  been  62°  53'  31";  what  is  the  correction  to  a? 

The  change  in  A  is  1'  58"  =  118"  =  118/206265  rdn. 
Also,   a'  =  6'  +  c'-26ccos^;   differentiating   this,  supposing   b 

and  c  constant,  we  have 

2a  da  =2bc  sin  A  dA,     : .  da  =  bc  sin  A  dA/a 

=445x606Xsin62°5r33"Xll8/206265x565=-243. 

An  approximate  value  of  sin  A  is  sufficient  in  this  place. 

6.  Given  loge  900=6*8024,  find  loge  901. 
Increase  of  log  x  =dx/x  =  1/900.  Ans.  6*8035. 
7.  Given  log.o  1000  =3,  find  logio  1002.  Ans.  3*00087. 
8.  Find  tan  45°  1'.  Ans.  1*00058. 
9.  On  account  of  the  rotation  of  the  earth  the  correction  to 

the  weight  ly  of  a  body  is  —w  cos'V289,  where  -^  is  the  latitude. 
What  is  the  change  in  this  correction  for  one  mile  north  of  lati- 

tude 45°  N.?  the  radius  of  the  earth  being  assumed  to  be  4000 
miles.  Ans.  w;/ (289x4000). 

10.  Find  the  relation  connecting  small  differences  of  t  and  d  in 

the  equation 

sin  A  =sin  ̂   sin  ̂   +  cos  ̂   cos  d  cos  <, 

^  and  h  being  constant. 
Differentiating  and  arranging  the  terms,  we  get 

V  sm  t     tan  if 

This  is  the  "Equation  of  Equal  Altitudes"  in  astronomy. 
11.  Find  the  relation  connecting  small  differences  of  d  and  A 

in  the  equation 

sin  3  -sin  <f>  sin  /i  — cos  (f>  cos  h  cos  A, 

^  and  h  being  constant. 

Am,  dA  =co8  d  dd/{coa  ̂   cos  h  sin  A). 
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12.  In  any  plane  triangle 

(1 )  da  =  cos  C  db-\- cos  B  dc-\-h  sinC  dA, 

(2)  ̂"
-* a      0 

dA dB 

tan  A     tan  B' 
13.  The  sides  a  and  6  of  a  right-angled  triangle  ABC  (C=90°) 

receive  small  corrections  da  and  dh;  what  is  the  change  in  the 
perpendicular  p  from  the  right  angle  on  the  hypothenuse? 

dp     da  ,  dh 
Ans.  -.  =  --  +  . or    dp  =  cos^A  dA  +  cos^B  db. 

p'    a'  ■  b'' 50.  Solution  of  equations  by  approximation. 
    

If  a  is  a 

value  of  X,  and  h  a  small  increment  of  x,  then,  §  42  (2), 

f{a  +  h)  —  f{a)  =  f'{a)h,  nearly. 

Let  f{x)  =  0  be  an  equation,  a  a  quantity  which  is  known 
(by  trial  or  otherwise)  to  be  an  approximate  value  of  a 

root  of  the  equation,  a  +  h  to  be  that  root,  where  h  is  small 

compared  with  a.  Then  /(a  +  /i)  =  0.  .".  h=  —f(a)/f(a), 
nearly.     Hence  if  a  be  a  first  approximation  to  the  root, 

/'(a) 

will  be  a  nearer  approximation.  If  this  new  value  be  sub- 
stituted for  a  in  (1),  a  nearer  approximation  still  will  be 

obtained,  and  with  this  a  closer  approximation,  and  so  on. 

(1) 

D    C      B        X 

If  Fig.  25  is  the  graph  of  f{x),  the  roots  of  the  equation 

f{x)  =  0  are  the  intercepts  of  the  curve  on  the  x-axis.  If 
OA  is  the  true  value  of  a  root  and  OB  the  assumed  value, 

the  first  corrected  value  is  OC.     For,  if  OB=a,  j{a)  =  BE^ 
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l'{a)  =  tnnBCE,   .'.  j{a)/f'{d)  =  CB. 
the  second  corrected  value  is  OD. 

Examples. 

If  OC  is  next  assumed, 

1.  a:'-4x-2=0.  Here  /(x)=x»-4x-2,  and  /'(a:)=3x2-4. 
Since  /(2)=-2,  and  /(3)  =  13,  there  is  a  root  of  the  equation 
lying  between  2  and  3.  Let  us  then  assume  2  as  the  first  approxi- 

mation.   Then 

2 -/(?)      2-^=2-25 
/'(2)  8 

is  a  second  approximation.    Again, 

2-25- JK2-2b) /'(2-25) 
2-25 --035  =2-215, 

a  third  approximation. 

Since  /(0)=— 2,  and  /(— 1)=1,  there  is  a  root  lying  between 

0  and  —1.  Assume  it  to  be  —'5.  Then  the  next  approximation 
is  —'538.  Again,  taking  —'54  as  this  second  approximation  we 
find  the  next  to  be  -'5392. 

Similarly  x  =  —1*676  is  the  third  root. 
2.  a;'  +  2x-13=0.    "  Ans.  2*069. 
3.  x'-x'-2=0. 
4.  a:*=34. 
5.  x*-12x=200. 

6.  e*(l+x')=40. 
7.  x^=5. 
8.  a;*-12a;^  +  12x-3=0. 

1-696. 

2-024. 
2-982. 
2-046. 

2-129. 

2-858,  -3*907 



CHAPTER  XII. 

MULTIPLE  POINTS. 

51.  Tangents  at  the  origin.  Let  it  be  required  to  find 

the  line  which  touches  the  curve  3c^-\-y^  =  Saxy,  Fig.  28, 
at  the  origin. 

Differentiating  the  equation  we  obtain 

dy/dx  =  —  {x^  —  ay)  I  (?/2  —  ax) , 

which  for  the  point  (0,  0)  assumes  the  form  0/0.  The 
difficulty  here  met  with  is  avoided  by  the  method  now  to 

be  explained. 

52.  If  a  curve  passes  through  the  origin,  its  equation  can 
contain  no  constant  term;  let  it  be 

aix  +  61  ?/  +  a2x2  + 62^:2/ +  C2|/^  +  .  .  .  =  0. 

For  X  and  y  substitute  r  cos  6  and 

r  sin  6,  where  r  is  the  length  of  a 
straight  line  drawn  from  the  origin  to 

the  point  {x,  y)  on  the  curve,  and  0 

i?  the  angle  which  this  line  makes 
with  the  a;-axis. 
comes 

The  equation  be- FiG.  26. 

r(ai  cos  ̂   +  61  sin  d)-\-r'^{a2  cos2^  +  .  ..)  +  ..  ,  =  0. 

One  root  is  r  =  0,  which  implies  that  the  curve  passes  through 
the  origin;   the  remaining  roots  are  given  by  the  equation 

«i  cos  ̂   +  61  sin  d-\-r(a2  cos^  6  +  .  .  .)  +  .  .  .  =  0. 51 
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Another  root  will  =0  if  ai  cos  ̂ +61  sin  ̂ =  0.  Hence  if 

the  tangent  at  the  origin  makes  an  angle  ̂   with  the  a;-axis, 
<^  is  given  by  the  equation 

ai  cos  <^  +  61  sin  ̂   =  0.  (1) 

If  (j,  y)  is  a  point  on  the  tangent  at  a  distance  t  from 

the  origin,  cos  (j)  =  x/t  and  sin  ̂   =  y/L  Substituting  in  (1) 
we  have  aiX-\-biy=0  for  the  equation  of  the  tangent  at  the 
origin,  i.e.,  the  terms  of  the  first  degree  in  the  given  equa- 

tion, equated  to  zero,  represent  the  tangent  at  the  origin. 
If  there  are  no  terms  of  the  first  degree,  it  may  be  shown 

in  the  same  way  that  a2X^  +  h2xy-{-C2y^  =  0  is  the  equation 
of  a  pair  of  tangents  at  the  origin;  and  generally,  when  the 
origin  is  a  point  on  the  curve,  the  terms  of  the  lowest  degree, 
equated  to  zero,  represent  the  tangents  at  the  origin. 

53.  Multiple  points.  A  point  at  which  there  are  two  or 
more  tangents  (i.e.,  where  two  or  more  branches  of  a  curve 
intersect)  is  called  a  multiple  point;  it  is  called  a  double 
point,  a  triple  point,  etc.,  according  as  two,  three,  etc., 
branches  intersect  at  the  point. 

When  the  equa.tion  a2X^  +  b2xy-\-C2y^  =  0  represents  a  pair 
of  distinct  lines  the  point  is  called  a  node  (Figs.  27,  28). 
When  the  lines  are  coincident  the  two  branches  of  the 

curve  touch  one  another  and  the  tangent  may  be  considered 
as  a  double  tangent.  Such  a  point  is  called  a  cusp,  which 
is  said  to  be  of  the  first  or  second  species  according  as  the  M 
two  branches  of  the  curve  lie  on  opposite  sides  (Figs.  29,  30)  ■ 
or  on  the  same  side  (Fig.  31)  of  their  common  tangent;  and 
to  be  double  or  single  according  as  the  branches  lie  on  both 
sides  (Fig.  34)  or  on  one  side  only  (Fig.  29)  of  their  common 

normal.  A  cusp  is  also  called  a  stationary  point;  for,  con- 
sidering the  curve  as  the  path  of  a  moving  point,  at  a  cusp 

the  point  must  come  to  rest  and  reverse  its  motion. 

When  the  lines  are  imaginary  the  point  is  called  a  cou', 
jugate  point.    The  coordinates  of  such  a  point  satisfy  the] 



53. MULTIPLE  POINTS. 
53 

equation  of  the  curve,  but  the  point  is  isolated  from  the  rest 
of  the  locus  which  the  equation  represents. 

Examples. 

1.  The  lemniscate*  a'{y'-x')-^{y'  +  x''y=0,  Fig.  27. 
The  origin  is  a  node  at  which  the  tangents  are  y'—x 

y=x  and  y-^  —x. 
Y 

C 

0,  i.e., 

Fig.  27. Fig.  28. 

2.  The  folium  t  x^-^y^='iaxy,  Fig.  28. 
The  origin  is  a  node,  the  tangents  being  given  by  xy==Q,  i.e., 

x=0,  y=0,  the  axes. 

3.  The  semi-cubical  parabola  ay^=x^,  Fig.  29. 
The  origin  is  a  cusp,  the  tangents  being  given  by  y^=0,  i.e., 

two  lines  coinciding  with  the  axis  of  x.  Moreover,  the  curve  is 
symmetrical  with  regard  to  the  axis  of  x,  and  y  is  impossible  if  x 
is  negative;  hence  the  cusp  is  single  and  of  the  first  species. 

4.  In  the  curve  {y~xy=x^,  Fig.  30,  the  origin  is  a  cusp  at 
which  the  tangent  is  y=x;  also,  since  y=x±x^,  y>  x  on  one 
branch  and  <x  on  the  other,  hence  the  cusp  is  of  the  first  species. 

*  The  curve  is  most  easily  plotted  from  its  polar  equation 
r^  =  a'  cos  2d. 

t  This  curve  may  be  plotted  as  follows:  Let  y=mx  in  the  equation. 
Then  a;  =  3am/(l  +  m^)     and     y  =  mx     or     dam^/(l -{-m^). 
Thus  x  and  y  are  expressed  in  terms  of  a  third  variable,  and  by  giving 
arbitrary  values  to  m  the  ccordinates  of  any  number  of  points  on  the 
curve  may  be  calculated.  The  same  substitution  may  be  employed 
in  other  cases  (e.g.,  Figs.  36,  37,  38)  in  which  the  equation  contains 
terms  of  two  degrees  only.  It  should  be  noticed  that  m  is  the  slope 
of  the  line  drawn  from  the  origin  to  the  point  {x,  y)  on  the  curve. 



54 INFINITESIMAL  CALCULUS. [Ch.  XII, 

5.  In  the  curve  (t/-a;')'=xS  or  y==x'{l±y/x),  Fig.  31,  the 
origin  is  a  cusp,  the  tangent  at  which  is  t/=0;  also,  7/  is  +  on 
both  branches  until  x  =  l,  and  .* .  the  cusp  is  of  the  second  species 

X"
 

Fig.  29. Fig.  31. 

6.  In  the  curve  y^=x^{2x  +  l),  Fig.  32,  the  origin  is   a  node 

at  which  the  tangents  arey=  ±x.     But  in  the  curve  y^=x'^{2x  —  l), 
Fig.  33,  the  tangents  are  y 2  ==  _- ;^,  and  are  .'.  imaginary,  and 
hence  the  origin  is  a  conjugate  point. 

Fig.  32. Fig.  33. Fig.  34. Fig.  35. 

7  There  are  certain  cases  in  which  the  origin  is  a  conjugate 
point  even  when  the  terms  of  the  second  degree  are  a  perfec  t 

square.  Thus,  in  the  curves  y^=x*{2x-^l),  Fig.  34,  an<l 
t/'=x^2x  — 1),  Fig.  35,  the  origin  is  a  double  point  and  the  tan- 

gents are  given  by  y^=0;  in  the  first  curve  the  origin  is  a  double 
cusp,  in  the  second  a  conjugate  point,  since  y  is  imaginary  for 
any  value  of  x  less  than  ̂ . 

8.  The  curve  ay'-3ax^y-=x*,  Fig.  36. 
The  origin  is  a  triple  point  at  which  the  tangents  are 

ai/'-3ax'!/-0;  i.e.,  y  =0,  y=±xVs. 
9.  In  the  curve  at/*— ax' i/'=x*,  Fig.  37,  the  origin  is  a  quad- 

ruple point,  at  which  the  tangents  are  y=0,  y=0,  y  =  ±x. 

10.  (x— !/)'-(x  — 1)\  The  point  (1,  1)  is  a  cusp,  for  the  equa- 
tion referred  to  parallel  axes  through  (1,  1)  is  {x—yy=x^. 
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11.  Find  the  tangents  to  the  following  curves  at  the  origin: 

(1)  {a'  +  x')y'  =  {a'-x')xK  Ans.  y=±x. 
(2)  a^y{x-{-y)=x\  y=o,x-\-y=0. 
(3)  x{y-r-xy^y\ 
(4)  a{y-x){y'  +  x')  +  x*^Q. 
(5)  y^{y-x)=a{y^^-x^). 
(6)  \x-a)y-x{x-2a). 
(7)  y'Hx-l)x\ 

x=0,  y=x,  y=x. 

y=x. 

x-\-y=0. 

y=2x. Imaginary. 

Fig.  36. Fig.  37. 

12.  Show  that  the  origin  is  a  single  cusp  of  the  first  species  on 

the  cissoid  y^{a—x)=x^,  Fig.  41. 
13.  Show  that  there  is  a  node  at  the  point  (1,  2),  on  the  curve 

{y-2y  =  {x-iyx. 
14.  Show  that  the  point  (2a,  0)  is  a  node  on  the  curve  ay^  = 

{x-a){x-2ay. 
15.  Show  that  the  point  (—a,  0)  is  a  conjugate  point  on  the 

curve  ay'^=x{a-\-xy. 

54.  Let  the  equation  of  a  curve,  freed  (if  necessary)  from 

j  fractions  and  radicals  affecting  the  coordinates,  be  f{x,  y)=c 
lor  u  =  c.  The  tangent,  §47  (2),  when  referred  to  parallel 
I  axes  through  the  point  of  contact  {xi,  yi)  is 

(S)."  ©,-<>• 
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Hence  if   ( ̂r-  I  =0  and    ( ;^ )   =0  the  equation  of   the \dx)i  \dy/i 
curve  referred  to  the  new  axes  will  have  no  terms  of  the 

first  degree.     Conversely,  points  whose  coordinates  satisfy 

du/dx=0    and    du/dy=0    as  well   as  the  given  equation 
u  =  c  are  multiple  points  of  the  curve. 

Ex.  1.  To  examine  the  curve  {x  —  iy  —  {2x—yy=0  for  multiple 
points. 

du/dx=5{x-iy-4{2x-y)=0, 
du/dy=2{2x-y)=0, 

whence  x  =  l,  y=2.  These  coordinates  satisfy  the  given  equa- 
tion, hence  (1,  2)  is  a  multiple  point.  Transforming  to  parallel 

axes  through  (1,  2)  the  equation  becomes  x^  —  {2x—yy=0,  hence 
the  point  is  a  cusp  at  which  the  tangent  is  2x=y. 

2.  Examine  the  curve  x^  —2x^ -\-y^  —4iX-^2y  +  9  =0  for  multiple 
points.  Ans,  A  conjugate  point  at  (2,  —1). 



CHAPTER  XIII. 

ASYMPTOTES. 

55.  Definition.  An  asymptote  of  a  curve  is  the  limit  of 

position  of  a  secant  when  two  of  its  points  of  intersection 

with  the  curve  move  away  to  an  infinite  distance,  and  hence 

also  the  Umit  of  position  of  a  tangent  when  the  point  of 
contact  moves  to  an  infinite  distance. 

56.  Asymptotes  by  substitution. 

Ex.  1.  Of  the  curve  x^-\-y^=Zaxy,  Fig.  28,  the  fine  y=mx-{-h 
is  an  asymptote  if  m  and  b  are  determined  so  that  the  line  may 
meet  the  curve  in  two  points  infinitely  distant.  Substituting 
mx  +  b  ioT  y  in  the  equation  of  the  curve  we  have 

{l+m')x'-]-S{m'b-am)x'-{-.  .  .=0,  (1) 

the  roots  of  which  are  the  abscissas  of  the  points  of  intersection 
of  the  line  and  the  curve.  Two  of  the  roots  become  infinite  * 
when  m  and  b  change  so  as  to  cause  the  coefficients  of  the  two 

highest  powers  in  (1)  to  =0.  Hence  the  required  values  of  m 
and  6  are  obtained  by  solving  the  equations 

l+m^=0,     m^b—am=0. 

.•.m=— 1  and  b=—a.     Hence  the  asymptote  is  y=—x—a,  or 
x  +  y  +  a=0.     The  result  might  have  been  obtained  equally  well 
by  the  substitution  x=my  +  b. 

*  The  equation       aQX'^-\-ayX^-^-\-  .  .  .-\-an—^x-\-an  =  0  (2) 

is  obtained  from        anX™+an-ia:"~^  +  .  .  .  +  aia:+ao  =  0  (3) 
by  changing  x  into  1/x.  The  roots  of  (2)  are  the  reciprocals  of  those 
of  (3).  Hence  if  a^  and  a^  change  and  =  0,  two  roots  of  (3)  =  0  and 

.'.  two  roots  of  (2)  become  infinite. 

57 
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2.  Find  the  asymptotes  of  the  hyperbola  —--  =  !• 
b 

Ans.  y=  ±-x. a 

57.  Asymptotes  by  expansion.  The  following  definition  of 

an  asymptote  gives  a  better  idea  of  the  relation  of  the  line 
to  the  curve: 

Def.  When  the  distance  (measured  parallel  to  an  axis) 
between  a  line  and  a  curye  is  infinitesimal  as  both  recede 

to  an  infinite  distance,  the  line  is  said  to  be  an  asymptote 
to  the  curve.  Such  lines  may  be  rectilinear  or  curvilinear. 
If  the  equation  of  a  curve,  when  y  is  expressed  as  a  series 
of  descending  powers  of  x,  take  the  form 

3/=ax+6+^+^  +  ...,  (1) 

the  line  y=ax  +  b  will  be  a  rectilinear  asymptote.  For  the 
difference  between  the  y  of  the  curve  and  the  y  of  the  line 

is  c/x-\-d/x^  +  .  .  .  ,  which  is  infinitesimal  when  x  is  infinite. 
The  line  y=axi-b  is  also  the  limit  of  a  tangent  of  the 

curve  (1).  For  the  slope  of  the  tsingent  =  dy/dx  =  a  — cx~^ 
— .  .  .  =a  for  X  infinite,  and  the  ̂ /-intercept  of  the  tangent 

=  y— X dy/dx=b  +  2cx~^  + .  .  .  =6. 
The  sign  of  the  term  c/x  in  (1)  will  determine  whether  the 

curve  lies  above  or  below  the  asymptote  when  x  is  very 
large. 

If  the  equation  take  the  form 

d     e 
y=ax^-\-bx-\-c-\   \--^  +  .  .  . , 

X     x^ there  will  be  a  curvilinear  asymptote,  viz.,  the  parabola 

y  =  ax^-\-bx-¥c. 

Ex.  1.  y'-x>  +  3aa:»,  Fig.  38. 

We  have   y"-x"(l+-j,    or    y=x(l-\ — j   ,  which  by   the' 
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binomial  theorem  (when  a:|>|3a) 

.*.  7/=x  +  a  is  an  asymptote.  The  curve  Hes  below  the  asymptote 
when  a;  is  a  large  positive  number,  and  above  it  when  a;  is  a  large 
negative  number. 

x^     ii^  hx  I       x''\ 

2.  The  hyperbola  ̂   -f^  =  1-     Here  i/  =  ±-  (^1  --j 

;2\* 

'.  the  asymptotes  are  t/=  ± 

hx 

'   B 

Y V 
c 

'^ 

X 

Fig.  38. Fig.  39. 

3.  ̂ i{x-\)=x\  Fig.  39. 

By  division,         4?/ ■■x''-^x^\-\- 

X'
 

x-\  x—\ 

When  X  is  very  large  the  last  term  is  very  small  and  =0,  and 

the  ordinate  of  the  curve  =  that  of  the  parabola  4iy=a:2  +  a:  +  l, 
which  is  called  a  paraboUc  asymptote.  (The  line  AB  is  the  axis 
of  the  parabola.)  It  will  be  noticed  that  this  curve  is  asymptotic 

to  the  given  curve  both  when  a;  is  +  and  when  a;  is  — .  The  line 
x  =  \  is  a  rectiUnear  asymptote,  as  will  be  seen  from  §  58. 
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58.  Asymptotes  parallel  to  the  axes.  Let  the  algebraical 
equation  of  a  curve,  freed  (if  necessary)  from  fractions  and 
radicals  affecting  the  coordinates,  and  arranged  in  descending 
powers  of  x,  be 

fi{y)x^+f2{y)x^-'+f3(y)x^-^+^  •  .=0, 
whence fiiy)+f2(y)l+h{y)^+ 

=0. 

(1) 

If  there  is  an  asymptote  parallel  to  the  x-axis,  y  remains 
finite  when  x  is  infinite.  Hence  all  the  terms  of  (1)  after 

the  first  become  infinitesimal,  and  the  y  of  the  curve  ap- 
proaches a  lirnit  which  satisfies  fi{y)  =  0,  i.e.,  y  =  the  y  of 

a  hne  y—a  =  0,  y—a  being  a  factor  of  fi(y).  Hence,  when 
the  equation  of  a  curve  is  arranged  according  to  powers  of 
X,  the  coefficient  of  the  highest  power,  equated  to  zero, 

represents  the  asymptotes  which  are  parallel  to  the  a:-axis. 
The  asymptotes  parallel  to  the  2/-axis  may  be  found  in  the 
same  way. 

Fig.  40. Fig.  41. 

Ex.  1.  x»i/»-3xt/'-a;'4-2!/'=0.  Fig.  40. 
Arranged  according  to  powers  of  x  the  equation  is 

(t/'-l)x»-3i/'x  +  22/'=0, 
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and  according  to  powers  of  y, 

{x-\){x-2)y''-x''=0. 

Hence  t/=  ±1,  and  x  =  l,  x=2,  are  asymptotes  parallel  to  the 
axes. 

2.  The  cissoid  y^{a—x)=x^,  Fig.  41. 
The  line  a  —x  =0,  or  a:  =  a  is  an  asymptote  parallel  to  the  y-axis. 

59.  In  any  equation  the  terms  of  the  highest  degree,  equated 
to  zero,  represent  lines  drawn  through  the  origin.  The 

equation  which  gives  the  slopes  of  these  lines  is  found  by 

substituting  mx  for  y,  or  m  for  y/x.  This  is  the  same  equa- 
tion as  that  which  determines  the  slopes  of  the  asymptotes 

(§  56).  Hence  the  terms  of  the  highest  degree,  equated  to 

zero,  represent  lines  drawn  through  the  origin  in  the  direc- 
tion of  the  infinite  branches  of  the  curve. 

Examples. 

1.  x^—y^=3axy.  Ans.  y=x—a. 
2.  y'=x'y  +  2x\  y=  ±x+l,y  +  2=0. 
S.  x'=xy^-{-SyK  x-y  =  l,  x-^S=0. 

4:.  x'^y=x^-\-x-\-y.  y=x,x=±l. 
5.  x*—y*  +  x^=4:xy^,  x±y  =  l. 

6.  x'=xY-i^-x)yK  3(a;-2/)  =  l,  2x=±V5"-l. 
7.  axy=x^—a^.  x=0,  ay=x^. 
8.  x^-\-y^=a\  x  +  y==0. 

9.  x'-27y'=2x\  ^                         3a: -9?/ -2=0. 

10.  y  +  xy=x^.  '  x-\-l=0,  y=x^-x  +  l. 
11.  y  =tan'a:.  The  y  of  the  curve  =00  when  the  x~  ̂ tt,  : .  the 

Hne  x=^7:  is  an  asymptote  (§  57).  Similarly  a:  =  (71  +  ̂)71,  n  any 
integer,  is  an  asymptote.  The  same  lines  are  asymptotes  to 
y=secx. 

12.  Show  that  y  =  l  and  y=  —1  are  asymptotes  of  2/=tanh  x. 
13.  Show  that  the  curve  2y=e^  is  asymptotic  to  2/=sinh  x, 

2/  =  cosh  X,  and  y=0. 



CHAPTER  XIV. 

TANGENT  PLANES.    TANGENTS  TO  CURVES  IN  SPACE. 

60.  Geometrical  illustration  of  partial  and  total  differen- 
tials. Let  z=j{x,  y).  Values  of  x  and  y  determine  z,  and 

hence  a  point  (x,  y,  z)  in  space  referred  to  axes  which  we 
shall  assume  to  be  rectangular.  Points  thus  obtained  lie 

on  a  surface  which  is  the  locus  of  the  equation  z=f{x,  y). 
This  surface  is  a  geometrical  representation  of  the  function. 

z 

xi/ 

K 

J 

H 
G 

E f 
R       / 

'^0 

A 

/e
x 

■ 
M 

/ 

'^N 

I c 
Fig.  42. 

Let  OA=x,  AM=y,  and  MP=z.  Then  P  is  a  point  on 
the  surface.  Let  OB=x-{-dx,  BC=y+dy,  and  let  the  new 
value  of  z  be  CQ.  Then  Q  is  another  point  on  the  surface. 
The  plane  PF  parallel  to  XOY  cuts  off  CF  =  MP,  hence  FQ 
is  Jz,  the  increment  of  z.  Planes  through  P  and  Q  parallel 
to  XOZ  and  ZOY  cut  the  surface  in  PH,  HQ,  QK,  KP. 

62 
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Draw  PJ  and  PG  tangents  to  PK,  PH,  and  let  PGRJ  be 
the  plane  through  PJ,  PG.  If  we  suppose  y  to  be  constant, 
we  are  confined  to  the  plane  PN  (produced  if  necessary); 
PI  =  dx  and  PJ  touches  PK,  hence  I J  is  d^^z.  Similarly 
EG  is  dyZ.  Let  a  line  through  the  middle  point  of  MC  parallel 
to  OZ  meet  the  plane  PGRJ.  This  \ine  =  i(MP+CR)  in 
the  trapezium  PMCR,  and  also  =^{DG+NJ)  in  the  trape- 

zium GDNJ.  .-.  FR  =  IJ  +  EG  =  d:,z  +  dyZ.  But  dz  =  d^z  + 
dyZ  (§  45).  Hence  FR  is  dz.  The  tangents  of  the  angles 
IPJ,  EPG  are  the  partial  derivatives  of  z  with  respect  to 

X  and  y,  i.e.,  they  are  'dz/dx  and  'dz/'dy. 
6i.  Tangent  plane.  When  i^;  and  dz  are  infinitesimal  the 

latter  is  the  part  of  the  former,  which  contains  the  infini- 
tesimals of  the  lowest  order  (§  46).  Thus  FQ  and  FR 

correspond  in  the  plane  PMCQ  to  Jy  and  dy  of  §  42.  Hence 
the  straight  line  PR  touches  the  section  of  the  surface  made 
by  the  plane  PMCQ,  and  therefore  the  plane  PGRJ  is  the 
locus  of  all  such  tangent  lines  at  P,  for  dx  and  dy  are  any 
increments.  Such  a  plane  is  defined  to  be  the  tangent  plane 
at  P. 

Notice  that  if  {x,  y,  z)  is  the  point  of  contact,  and  dx,  dy 
are  any  increments,  {x^rdx,  y  +  dy,  z  +  dz)  is  any  other  point 
in  the  tangent  plane. 

62.  Equation  of  the  tangent  plane.  Let  the  equation  of 

the  surface  be  f{x,  y,  z)==c  or  u  =  c.     Differentiating, 

~dx  +—dy  +  —  dz  =  0. ox        dy         OZ 

Let  (xi,  yi,  Zi)  be  the  coordinates  of  the  point  of  contact 

P,  Fig.  42,  {x,  y,  z)  those  of  any  other  point  in  PR  and  there- 
fore of  any  other  point  in  the  tangent  plane.  Then  x  —  xi, 

y  —  yi,  z  —  zi  are  proportional  to  dx,  dy,  dz. 

is  the  equation  of  the  tangent  plane  at  (xi,  yi,  zi). 
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Ex.  To  find  the  tangent  plane  at  the  point  (-1,  1,  2)  on  the 
surface  x'—x^y  +  y^-\-z  =  l, 

du/dx=Sx'-2xy=5  for  the  point  (-1,  1,  2), 

du/dy=  —x^-\-2y  =  l  for  the  point  (  —  1,  1,  2), 

du/dz  =  l. 

Hence  the  tangent  plane  is 

5(x  +  l)  +  (2/-l)  +  (2-2)=0,     or    5a;  +  2/+2  +  2=0. 

63.  Equations  of  the  normal.  The  normal  passes  through 

(xi,  ?/i,  Zi)  and  is  perpendicular  to  the  tangent  plane;  hence 

its  equations  are 

x-xi      y-yi  _  z-zi  ^v 

/du\       (^\       (du\  ' \c)x/i      \dy)i     Ydzlx 

64.  Tangent  plane  at  the  origin.     Conical  points.    Let  the 

equation  of  the  surface  be  freed  (if  necessary)  from  fractions 
and  radicals  affecting  the  coordinates.  If  the  origin  is  on 

the  surface  the  equation  will  contain  no  constant  terms, 

and  by  substituting  r  cos  a,  r  cos  /?,  r  cos  y  for  x,  y,  z,  it 

may  be  shown  exactly  as  in  §  52  that  the  terms  of  the  first 

degree,  equated  to  zero,  represent  the  tangent  plane  at  the 
origin.  Similarly,  if  there  are  no  terms  of  the  first  degree, 

those  of  the  lowest  degree  present  will  represent  a  surface 

touching  the  given  surface  at  the  origin.  This  tangent 

surface  is  generally  a  cone,  in  which  case  the  origin  is  called 

a  conical  point;  but  it  may  be  two  or  more  planes.* 
As  in  §  54,  it  may  be  shown  that  the  coordinates  of  a 

conical  point  or  a  point  where  there  are  two  or  more  tan- 

gent planes  will  satisfy  du/dx  =  0,  u/dy  =  0,  du/dz  =  0,  as 
well  as  the  given  equation  u  =  c. 

*  A  homogeneous  equation  with  no  constant  term  represents  a 
locus  of  straight  lines  passing  through  the  origin.  For,  if  satisfied  by 
X,  y,  z,  it  is  satisfied  by  ex,  cy,  cz,  the  coordinates  of  any  other  point 
on  the  line  joining  the  origin  to  (x,  y,  z). 
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Ex.  1.  Of  the  surface  x'^—y^—z^  +  x^=0,  x^—y^—z^=0  is  a  tan- 
gent cone  at  the  origin, 

2.  Of  the  surface  x'^—y^—z^—2yz=x^,  x  +  y  +  z=0  and  x—y—z 
=0  are  tangent  planes  at  the  origin. 
3.  Find  a  conical  point  on  the  surface  x^  +  y^ -{-2yz  —Sx  —4:Z  =2. 

Ans.  (1,  2,  -2). 

65.  Centre  of  a  quadric.  Exactly  as  in  §  48  it  may  be 

shown  that  the  centre  of  any  surface  whose  equation  u=c 
is  of  the  second  degree  is  obtained  by  solving  the  simulta- 

neous equations  'du/dx=0,  du/dy=0,  du/dz=0. 

Ex.  Find  the  centre  of  x^—Sy^ ■z'-\-4yz-4x+8y-6z=0. 
Ans.  (2,  2,  1). 

66.  Curve  in  space 
another  on  a  curve, 

{x,  y,  z)  and  Q  {x+Jx,  y-\-Ay, 
z  +  Az).  Then  Ax=AB=CE= 
PG,  Jy  =  ED  =  GF,  and  Jz=FQ. 
Let  the  arc  PQ  =  Js  and  the 
chord  PQ  =  q.  The  tangent  PT 
is  the  limit  of  position  of  the 
secant  PQ  when  Q  approaches 
coincidence  with  P.  Let  a,p,y 
be  the  direction  angles  of  PT. 

Then  a  =  HPT,  and 

cos  a  =  £  cos  GPQ  =  £(Jx/q) 
=  £{Jx/Js)  (§  17)   =dx/ds. 

Similarly  cos  [^  =  dy/ds, 
Squaring  and  adding, 

Let  P  and  Q  be  two  points  near  one 
P  being 

cos  y=dz/ds. 

1 

(i)'*m'-(£)'. 
or    ds^  =  dx^  +  dy  +dz^.      (1) 

Draw  TK  parallel  to  ZO  to  meet  the  plane  PFG,  and  KH 
parallel  to  YO.  Then  if  dx  is  PH,  dy  is  HK,  dz  is  KT,  and 
ds  is  PT. 
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67.  If  the  coordinates  of  a  point  on  a  curve  are  given  in 
terms  of  a  fourth  variable,  dx,  dy,  and  dz  may  be  written 
down  at  once.  Usually,  however,  a  curve  in  space  is  given 
as  the  intersection  of  two  surfaces.  Let  the  surfaces  be 

w  =  ci  and  v  =  C2.     Differentiating, 

|->x4;.,4>=o.  (2) 
If  (x,  y,  z)  is  the  point  of  contact  P  of  a  tangent  plane, 

(x+rfx,  y+dy,  z-\-dz)  is  any  other  point  Q  in  the  plane. 
Hence  if  P{x,  y,  z)  is  a  point  in  the  curve  of  intersection  of 
the  surfaces,  and  (1)  and  (2)  are  simultaneous  in  dx,  dy,  dz, 

Q{x-\-dx,  y-^dy,  z-\-dz)  is  any  other  point  in  the  line  of  inter- 
section of  the  tangent  planes,  and  PQ  is  the  tangent  at  P 

to  the  curve  of  intersection. 

The  plane  which  is  perpendicular  to  the  tangent  line  at 
the  point  of  contact  is  called  the  normal  plane  of  the  curve. 

Ex.  Find  the  equations  of  the  tangent  to  the  curve 

x^-2y'  +  yz-hS=0,     xy-z''-{-x-\-4:=0 
at  the  point  (1,  —1,  2). 

Differentiating  the  equations, 

2x  dx-\-{z—4:y)dy  +  y  dz=0, 
{y  +  l)dx-\-xdy-2zdz=0, 

or,  for  the  point  (1,  -1,  2), 

2dx  +  6dy-dz=0,     dy-Mz^O, 
,  dx      dy     dz 
whence    =-^  =— . -23      8       2 

Since  dx,  dy,  dz  are  proportional  to  the  direction  cosines  of  the 
tangent,  the  ec|uations  of  the  tangent  are 

x-1 _y+l_z-2 

-23  ~    8  2~' 
'  The  normal  plane  at  (1,  -1,  2)  is 

-23(x-l)  +  8(2/  +  l)  +  2(2-2)=0,    or    23x-8!/-22=27. 
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Examples. 

1.  Find  the  tangent  plane  at  (2,  -1,  1)  on  the  surface 
x^-2y'-{-z=S.  Alls.  4:X-\-4y+z=5. 

2.  Find  the  tangent  plane  at  (  —  1,  1,  2)  on  x^-^-y"^ —z^ —yz—4:xy 
=  0.  Ans.  6x-4y-\-5z=0. 
3.  The  tangent  plane  at  any  point  of  the  central  quadric 

x'/a'-\-yWb^-\-z^/c^  =  '^  isXiX/a^  +  y,y/b'-\-z,z/c^  =  l. 
4.  The  tangent  plane  to  the  surface  xyz=a^  makes  with  the 

coordinate  planes  a  tetrahedron  of  constant  volume. 
5.  What  are  the  tangent  planes  at  the  origin  of  the  conoid 

x^—y^^x^z^?  Ans.  X  ±y=0. 

6.  Find  the  tangent  planes  to  x*-\-y*-\-z*  =Saxyz,  (1)  at  (0,  0,  0), 
(2)  at  {a,  a,  a). 

Ans.  (1)  x=0,  y=0,  2=0,  (2)  x  +  y-\-z=Sa. 
Also  to  x^  +  y^-\-z^=3a^x  at  the  same  points. 

Ans.  (1)  x==0,  (2)  2/  +  2=2a. 
7.  The  sum  of  the  squares  of  the  intercepts  of  the  tangent 

planes  of  the  surface  x^  +  yi-^z   =a^  on  the  axes  is  a^. 
8.  a:  =  a  sin  712,  y=a  cos  nz  are  the  equations  of  a  helix  (screw- 

thread)  on  a  circular  cylinder  of  radius  a,  the  2-axis  being  the 
axis  of  the  cylinder.  Show  that  the  equations  of  the  tangent 
at  any  point  are 

^-^1     y-Vi     ,    ,   =  — — •  =  z  — 2i, 

nyi        -nx^ 

and  that  the  tangent  makes  a  constant  angle  with  the  xy-plane. 
9.  Find  the  direction  angles  of  the  tangent  to  the  curve  of 

intersection  of  the  surfaces  of  Ex.  6  at  the  point  (a,  a,  a). 

Ans.  0,  45°,  135°. 



CHAPTER  XV. 

SUCCESSIVE  DIFFERENTIATION. 

68.  Successive  derivatives.  The  differential  of  f(x)  is 

(§  27)  f  (x)  dx.    Let  df{x)^f'\x)  dx,  df\x)  =  f''{x)  dx,  etc. 
The  several  functions  f'{x),  f'{x),  f'\x),  ...  are  called 

the  first,  second,  third,  .  .  .  derived  functions,  derivatives, 
or  differential  coefficients  of  f{x). 

Ex.  1.  /(a;)=3x'-2x  +  4,  l\x)=9x'-2,  /"(a;)  =  18x,  /'"(x)  =  18, 
/iv(:r)=0. 

2.  fix)  =sin  X,  /'(x)  =cos  x,  j"{x)  =  —sin  x,  f"'{x)  =  -cos  x,  etc. 

3.  /(x)=log(l  +  x),/'(x)  =  l/(l+a:),na:)  =  -l/(l  +  x)^etc. 

4.  J{x)  =e^,  /'(a;)  =e^,  f"{x)  =e^,  etc. 

69.  Successive  differentials.  Let  y  or  /(a;)  be  a  function 

of  X,  then  dy  =  j'{x)  dx.  The  differential  of  dy,  or  d{dy),  is 
written  c/^i^  (read  rf-two  y,  or  second  dy);  similarly, 
d:^y^d{(Py). 

Unless  the  variable  x  is  given  as  a  function  of  another 

variable  it  is  assumed  to  be  an  independent  variable — one 
to  which  arbitrary  values  may  be  assigned;  dx  is  then  an 
arbitrary  increment  of  x.  It  is  customary  to  take  dx  as  of 
the  same  value  in  each  successive  differentiation,  i.e.,  to  treat 
the  differential  of  the  independent  variable  as  a  constant 

in  differentiating.     Hence,  differentiating  dy=f'{x)dx, 

68 

I 
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d2y=f\x)dx.dx=r{x)  dx^,     or     d^y/dx^  =  f''{x)*      (1) 

Hence  also,     d^y  =  f"{x)  dx^,    or    d^y/dx^  =  f{x), 

and  similarly  for  the  higher  differentials.    Thus  the  successive 

differential  quotients  are  equal  to  the  successive  derivatives. 

Ex.1.  i/=e«^,  dy=aef^dx,    d^y=a^e^^dx^,  d^y=ah^^  dx^,    .., 
dny=a^e(^^  dx"^. 

2.  y=cosx,dy/dx=—s\xix  =  cos\x+^, 

:.  d^y/dx^  =  cos  I x-\- 2^] , .  .  . ,  d^y/dx^=  cos  I x-\-n^j  . 

3.  y=x^,  n  a  positive  integer,  d^y/dx"  =n! 

70.  If  X  is  not  the  independent  variable — if  it  is  itself  a 
function  of  another  variable — we  cannot  treat  dx  as  a  constant 

in   successive  differentiation.     For   if   x=f{d),   dx=f{d)dd, 
and  is  therefore  a  function  of  d. 

dy 

Differentiating  both  sides  of  f{x)  =  -~,  we  have 

n.)  dx^'^-^^y^^,  by(D), 

(XX 

Comparing  with  §  69  (1)  we  see  that  the  d^y/dx^  obtained 
when  X  is  the  independent  variable  is  equal  to 

dxd^y  —  dyd^x 
~dx^  ' 

obtained  when  x  is  not  the  independent  variable. 

Ex.  The  cycloid  x=a{d— sm.  d),  y=a{\  — cos  6).     Considering 

y  as  a  function  /(x)  of  x,  to  evaluate  j'{x)  and  j"{x)  when  6=7:. 

dx=a{l—cos  6)  dd,     dy  =a sin  d  dO, 

*  Since  dx  is  of  arbitrary  value  it  may  be  taken  as  infinitesimal, 

in  which  case  d'^y  is  in  general  an  infinitesimal  of  the  same  order  as  dx^. 
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and,  0  being  independent  variable, 

d^z  =  a  s\n  0  dO"^ ,     d^y  =  a  cos  6  dd^. 
...  .     dy        sin  0       ̂        , 

.*.  /  (a:)=  ,    =:;    =0     when      6=7:. dx     1  —  cos  0 

Substituting  in  (1),   j"{x)=   ;7t-,=  — ":-    when    5=;r. a{\  —cos  Oy         4a 

Examples. 

1.  y=ax^-Yhx-\-c,  dy/dx=2ax-\-b,  d^y/dx^=2a, 
2.  y  =  {a+xy,  dy/dx=3{a  +  x)\  d'y/dx^=6{a  +  x). 
3.  y  =x^  log  X,  d^y/dx^  =2x~K 
4.  y  =  cos  ax,  d*y/dx*  =a*  cos  ax. 
5.  x  =  sin-^y,  d^x/dy^  =y{l  —y^)-^,  d^y/dx^=  —y, 

6.  If /(x)=sin  x, /(")(x)=sin  (x  +  n—). 

7.  fix)  =xe^,  f(n){x)  =  (x  +  n)e^. 

8.  y=\ogx,  d''y/dxn  =  {  —  l)^-^{n  —  l)\/x^. 
9.  U  y=a  cos  nx  +  b  sin  nx,  d^y/dx^  +  n^y=0, 

10.  If  i/=ae'»^4-6e-"^,  d'y/dx'-n'y=0. 
11.  If  2/=e-^cosx,  (i^2//rfa;^4-42/=0. 
12.  If  ̂ =sin-'x,  (l-a:2)(i2^/da;2-u;(i?//rfx=0. 
13.  If  2/=tan-'x,  {l-\-x'')d'y/dx'  +  2x  dy/dx=0, 
14.  If  i/=e^sina:,  d2?//rfa;2-2di//da:  +  22/=0. 
15.  Given  x  dy—y  dx=r^  dO,  show  that 

X  d'y  -y  d'x=2r  dr  dd  +  r'  d'd. 
16.  By  differentiating 

dx  =  cos  <l>  ds,     and     dy  =  sin  ̂   c?s, 
show  that 

{d'xy+{d'yy=^{dcj>dsy+{dhy. 

17.  ?/'  =4ax,  2!/  rfy  =4a  dx,  or  ydy=2adx;  differentiating  again, 
yd^y  +  dy^^'O  {dx  being  constant), 

.*.  ydhj+{2adx/tjy=0,     or     dhj/dx' = -Aa'/y\ 

x'     w' 18.  Given  the  ellipse  — +  f-  =1    show  that 

dy^_h^     d'y__    b* 

dx         a^y    dx^~      a^y^' 
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cf^y/dx^  may  be  found  as  in  Ex.  17,  or  from  dy/dx.     Thus 

_  ̂1 d'y  _     6^^     ̂ dx 
dx^        a"^      y^     ' 

Substitute  for  dy/dx  and  reduce. 

19.  If  y=j{x)  find  ]"{x),  given  x  =  acos  0,  y  =  hs\n  6. 

Ans.  J"{x)^-h'/a''y\ 
20.  a''  +  y^==2xy,  d'y/dx^=a'/{x-yy. 

21.  x^  +  y^=Saxy,  d^y/dx^ ^2a^xy/{ax—y'^y. 



CHAPTER  XVI. 

or  A     Ax    Q 

Fig.  44. 

RATES. 

71.  Let  ?/  be  a  function  of  x  of  which  Fig.  44  is  the  graph. 
When  X  increases  by  the  amount  Jx  the  change  in  y  is  Jy, 
and  Jy/Jx  is  called  the  average  rate  of  change  of  y  per  unit 

of  X  (or  briefly,  the  average  . 
x-rate  of  y)  for  the  change 
Jx  in  X.  When  Jx  is  taken 
smaller  and  smaller  and  =  0 

the  average  •  rate  Jy/Jx  is 
taken  for  a  gradually  dimin- 

ishing change  in  x,  and  the 
limit  of  Jy/Jx,  namely  dy/dXj 
is  defined  to  be  the  x-rate  of 

y  for  the  value  x  of  the  vari- 
able. Thus  as  X  increases  and  reaches  the  value  OA,  the 

x-T&te  of  the  function  y  is  dy/dx  or  tan  cf).  This  is  an  in- 
stantaneous and  variable  rate,  and  is  the  same  as  the  con- 

stant rate  which  y  would  have  if  P  should  henceforward 
move  along  the  tangent  PD. 

If  y=f{x),  dy/dx  =  f{x)*  hence  the  a:-rate  of  j{x)  is  fix), 
and  for  a  similar  reason  the  x-rate  of  any  derivative  is  the 
succeeding  derivative. 

72.  li  y  is  a  function  of  x,  as  a;  changes  the  function  will 
increase  or  decrease  according  as  its  graph  rises  or  falls, 
that  is,  according  as  rf?/  is  -f  or  — .  Also  dx  is  +  if  x  in- 

creases. Hence  as  x  increases,  y  increases  or  decreases 
according  as  dy/dx  is  +  or  -.    Thus  a  +  value  of  the  rate 

72 
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implies  that  a  function  is  increasing  as  its  variable  increases, 

and  a  —  value  implies  that  the  function  is  decreasing  as  the 
variable  increases. 

73.  If  X  and  y  are  functions  of  a  third  variable  t, 

dy/dx=  (dy/dt)/idx/dt). 

Hence  dy/dx  is  the  quotient  of  the  simultaneous  rates  of 
change  of  y  and  x,  or  dy  and  dx  are  proportional  to  the  rates 

of  y  and  X.* 
If  y=f{x),  and  a:  is  a  function  of  t, 

dy/dt  =  f'{x)  .dx/dt, 

which  gives  the  rate  of  y  in  terms  of  that  of  x. 

If  u  =  f{x,  y),  and  x  and  y  are  functions  of  i,  then,  §  45  (5), 

dududx    dudy 

dt      dx  dt     'dy  dt ' 
which  gives  the  rate  of  u  in  terms  of  the  rates  of  x  and  y. 

74.  If  a  point  moving  in  a  straight  line  is  at  a  distance  x 
from  a  fixed  point  in  the  line  at  the  end  of  an  interval  of 

time  whose  measure  is  t,  its  velocity  v  is  the  <-rate  of  x,  and 
is  therefore  dx/dt]  and  its  acceleration  a  is  the  i-rate  of  v, 
and  is  therefore  dv/dt.     But 

di—\ 
dv_    \dt  /  _d^x      .,        dv_dvdx_do 
dt~  ~dr~~d^'  '   Jt~"dx~drdx^' 

,.  dx  ,  dv    d^x       dv 
Hence  v=—r     and    0  =  37  =-7:5  =  ̂   T"* dt  dt      dt^       dx 

Similarly  the  angular  velocity  and  angular  acceleration  of 
JO  /72/} 

a  revolving  body  are  -^  and  -^  respectively. 

Time  rates  are  sometimes  indicated  by  dots,  x  being  the 

same  as  dx/dt,  and  x  the  same  as  d^x/dt^. 

*  In.  some  treatises  dy  and  dx  are  defined  to  be  rates. 
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Examples. 

1.  The  ordinate  of  the  curve  2/  =  v25— x^  is  moving  parallel 
to  the  2/-axis  at  the  rate  2  in.  per  sec.  At  what  rate  is  its  length 
changing  when  x  =3? 

-    =   ,  =  — —  when  re  =3  and  dx/dt=2.     Hence  y  is 

decreasing  at  the  rate  of  1^  in.  per  sec. 

2.  At  what  points  on  the  curve  y^\og  sec  x  do  x  and  y  change 
at  the  same  rate?  Ans.  x  =  {n-\-\)n,  n  an  integer. 

3.  Find  the  acceleration  if  (1)  v=u^-ht,  (2)  x=ut  +  hi\  (3) 

v'=w'  +  6x,  wand  6  being  constants.     Ans.  (1)6,   (2)26,   (3)^6. 

4.  If  x=a  cos  (6/  +  c),  show  that  the  acceleration  =  —h'^x. 
5.  li  x=a  sinh  {ht  +  c),  show  that  the  acceleration  =6^a:. 
6.  Show  that  tan  x  always  increases  with  x. 
7.  Three  adjacent  sides  of  a  rectangular  parallelepiped  are 

3,  4,  5  inches  in  length,  and  are  each  increasing  at  the  rate  of 

•02  in.  per  in.  per  min.     At  what  rate  is  the  volume  increasing? 
Ans.  3*60  cu.  in.  per  min. 

8.  One  end  of  a  ladder  moves  down  a  vertical  wall  with  velocity 

t>,,  while  the  other  end  moves  along  a  horizontal  plane  with  veloc- 
ity V2.  Show  that  ̂ i/vj=tan  0,  where  6  is  the  angle  which  the 

ladder  makes  with  the  vertical. 

9.  Two  straight  lines  of  railway  intersect  at  an  angle  60°.  On 
one  a  train  is  8  miles  from  the  junction  and  moving  towards  it 
at  the  rate  of  40  miles  per  hoilr,  on  the  other  a  train  is  12  miles 
from  the  junction  and  moving  from  it  at  the  rate  of  10  miles 
per  hour.  Is  the  distance  of  the  trains  from  each  other  increasing 
or  decreasing  ? 



CHAPTER  XVII. 

MAXIMA  AND  MINIMA. 

75.  Suppose  i/  to  be  a  function  of  x  and  that  x  continually 

increases.  Then  (§  72)  y  will  increase  or  decrease  accord- 
ing as  dy/dx  is  +  or  — .  When  dy/dx  changes  from  +  to 

— ,  y  ceases  to  increase  and  begins  to  decrease,  and  is  then 
said  to  be  a  maximum;  when  dy/dx  changes  from  —  to  +, 
y  ceases  to  decrease  and  begins  to  increase,  and  is  then 
said  to  be  a  minimum.  Now  in  order  that  a  quantity  may 

change  sign  it  must  become  0  or  00  or  —  00  ;  *  hence  as  y 
becomes  a  max.  or  a  min.,  dy/dx  becomes  0  or  00  or  —00 
and  changes  sign  from  +  to  —  for  a  max.  and  from  —  to  + 
for  a  min. 

Fig.  45. 

76.  Suppose,  for  example,  that  the  curve  of  Fig.  45  repre- 
sents the  graph  of  a  function  and  that  it  is  traced  by  a  point 

moving  from  left  to  right  so  that  dx  is  + .  Then  y  decreases 
from  A  to  5  and  dy/dx  is  — ,  between  B  and  C  y  continually 

*  A  quantity  may  change  sign  on  account  of  finite  discontinuity 
without  passing  through  the  value  0,  but  this  occurs  so  rarely  that 
we  need  not  consider  it  further, 

75 
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increases  and  dy/dx  *  is  + ;  at  B  y  ceases  to  decrease  and 

begins  to  increase,  dy/dx  changes  from  —  to  +  through  the 
value  0,  and  y  is  a  min.  Similarly  at  C  y  is  a  max.,  and  again 
a  min.  at  D.  At  E  dy/dx  becomes  oo  and  changes  from  + 
to  — ,  hence  y  is  a  max.,  and  similarly  y  is  a  min.  at  F. 

Points  such  as  A,  B,  etc.,  are  called  turning  points,  and 
the  max.  and  min.  values  of  y  are  called  turning  values. 

It  will  be  noticed  that  a  max.  is  not  necessarily  the  greatest 

of  all  the  values  of  y,  it  is  greater  than  the  values  which  im- 
mediately precede  or  follow  it;  and  similarly  a  min.  is  not 

necessarily  the  least  value  of  y. 

*j'j.  To  obtain  the  values  of  x  which  make  a  function  y  a 
max.  or  min.  we  must  obtain  dy/dx  and  find  what  values  of 
X  cause  it  to  become  zero  or  infinite.  To  distinguish  the 
maxima  from  the  minima  we  must  determine  whether  dy/dx 

changes  from  +  to  —  or  from  —  to  +  as  x  passes  through 
the  critical  value.  In  the  former  case  y  will  be  max.,  in 
the  latter  a  min.  It  may  happen,  however,  that  dy/dx  does 
not  change  sign,  although  it  becomes  0  or  oo  (e.g.,  at  G, 
Fig.  45),  in  which  case  y  is  neither  a  max.  nor  a  min. 

Ex.  1.  i/=x'-6a;H9a:  +  l. 
Hered?//da;=3x'-12x  +  9=3(a;-l)(x-3). 
When  X  is  a  little  less  than  1,  x  —  l  is  —  and  x—Z  is  — , 

.*.  dy/dx  is  +. 
When  x  =  l,  dy/dx  is  0.  When  a:  is  a  little  more  than  1,  a;  — 1 

is  +  and  x— 3  is  — ,  .*.  dy/dx  is  — .  Hence  dy/dx  changes  from 
+  to  —  through  0  and  .'.  y  is  a  max.  when  x  =  \.  Substituting 
1  for  x  in  the  given  function  we  find  the  max.  value  of  y  to  be  5. 
Similarly  x  =3  makes  y  a  min.,  viz.,  1. 

2.  y  =  {x-\y,  dy/dx=Z{x-iy)  .' .  dy/dx=0  when  rr  =  l,  but 
does  not  change  sign  f  when  x  passes  through  this  value,  .'.  y is  neither  a  max.  nor  a  min. 

♦It  will  be  remembered  that  dy /<jix  =  t&n  <f>,  and  is  therefore  + 
or  —  according  as  0  is  +  or  — . 

f  (x— a)**  changes  sign  with  x—a  only  when  n  is  an  odd  integer, 
or  a  fraction  whose  numerator  and  denominator  are  both  odd 
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3.  !/-2  +  (x-l)i,     dy/dx  =  -      _       ;      .'.  dy/dx  becomes  -QO 

and  changes  from  —  to  +  as  a;  passes  through  the  value  1,  hence 
x  =  l  makes  y  a  min.,  viz.,  2. 

78.  The  sign  of  d^y/dx^  (  =  the  a;-rate  of  dy/dx)  tells  us 
at  any  time  whether  dy/dx  is  increasing  or  decreasing.  If 
then  the  value  of  x  which  makes  dy/dx  equal  to  0  also  makes 

dhj/dx'^  plus,  we  infer  that  dy/dx  is  increasing  when  it  passes 
through  0,  i.e.,  that  dy/dx  changes  from  —  to  +,  and  hence 
that  2/  is  a  min.;  whereas,  if  the  value  of  x  which  makes 

dy/dx  equal  to  0  also  makes  d'^y/dx^  minus,  we  infer  that 
dy/dx  is  decreasing  when  it  passes  through  0,  i.e.,  that  it 

changes  from  +  to  — ,  and  hence  that  ?/  is  a  max. 

Hence  to  distinguish  the  maxima  from  the  minima  we  may- 

find  d^y/dx'^,  and  in  it  substitute  the  values  of  x  which  make 
dy/dx  equal  to  0.  Then  for  every  +  result  ?/  is  a  min.,  and 

for  every  —  result  t/  is  a  max.* 

Ex.  I.  In  Ex.  1,  §  77,  d'^y/dx^=Q>x-\2,  which  is  -  when  x  =  \, 
and  +  when  x  =3.  Hence  x  =  \  makes  y  a  max.  and  x  =3  makes 
y  a  min. 

2.  y=x^-lx''^Sx-V^(^,  dy/dx  =^x^-\Ax^S.  For  a  max.  or  a 
min.  3x^  —  14^+8=0,    .•.a;=for4. 

Also  d'^y/dx'^=Qx  —  \^,  which  is  —  when  x=§  and  +  when 
x=4;  .*.  a;  =f  makes  2/ a  max.  and  X  =4  makes  1/ a  min. 

79.  It  should  be  noticed: 
(1)  That  max.  and  min.  values  must  occur  alternately  in 

a  continuous  function,  i.e.,  between  two  successive  max. 
values  there  must  be  a  min.,  and  between  two  successive 
min.  values  there  must  be  a  max.  Also  of  two  values  of  x 

which  make  y  a  max.  or  a  min.,  if  one  makes  it  a  max.  the 
other  must  make  it  a  min. 

(2)  When  y  has  a  turning  value,  y^  (n  a  positive  or  nega- 
tive integer)  has  a  turning  value.     Thus  a  square-root  sign 

*  If  d^y/dx^  is  0  or  00  it  gives  no  information  as  to  the  turning 
values,  and  the  test  of  §  77  must  be  applied. 
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affecting  the  whole  of  the  variable  part  of  a  function  may 

be  disregarded  in  differentiating. 

(3)  A  constant  factor  may  be  omitted  from  the  function 

before  differentiating,  since  it  cannot  affect  the  values  of  x 
for  which  the  derivative  is  0  or  oo . 

Ex.  y  =  izxVd^—x^.  This  =  tz'^ d^x"^  —  x^ ,  and  .'.  y  will  be  a 
max.  or  a  min.  when  a^x^— x*  is  a  max.  or  a  min. ;  hence  2a^x 

-4x'  =  0,  .-.  x  =  0,  and  x=  ±a/V2. 

8o.  In  the  practical  applications  of  this  subject  it  will  be 
necessary  to  form  the  function  which  is  to  have  a  turning 

value.  It  will  frequently  be  obvious  from  the  nature  of  the 

problem  whether  the  result  corresponds  to  a  max.  or  a 
min. 

Ex.  1.  Of  all  arithmetical  fractions,  which  one  exceeds  its  square 
by  the  greatest  quantity  ? 

Let  the  fraction  be  x.    Then  x—x"^  is  to  be  a  max. 
.*.  1— 2a:  =  0,  and  hence  x  =  ̂ . 
2.  How  to  make  with  a  given  amount  (area)  of  material  a 

cylindrical  box  (with  lid)  which  shall  have  the  greatest  possible 
volume. 

We  have  the  total  surface  of  the  cylinder  given,  call  it  s,  and 
assume  h  for  the  height  and  x  for  the  radius  of  the  base. 

Then  s^2T:x^  +  2nxh,  .',  h  =  s/(2nx)-x. 
The  vjlume  V  =  nx%  =  ̂sx  —  nx^. 

.' .  dV/dx  =  ̂ s-  Stcx^  =  0,  for  a  max. 

.*.  a:  =  Vs/Gtt,     whence     ̂   =  2Vs/6;r. 

Henc^  the  height  must  =  the  diameter  of  the  base  and  each 

[Observe  that  in  these  examples  the  function  which  is  to  be  a 
max.  or  a  min.  must  be  expressed  in  terms  of  some  one  variable 

with  or  without  constants;  in  this  case  the  function  is  nx^h, 
where  both  x  and  h  are  variable,  but  there  is  a  relation  connect-' 
ing  X  and  h  from  which  h  may  be  obtained  in  terms  of  x;  thisj 

when  substituted  in  nx^h  gives  a  function  with  one  variable.] 
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3.  To  find  the  greatest  isosceles  triangle  that  can  be  inscribed 
in  a  given  circle. 

Let  ABC  (Fig.  46)  be  an  isosceles  triangle  inscribed  in  a  circle 
of  radius  a  and  centre  ilJ.     Let  DC  =  x.     Then 

.'.  iirc£LoiABC  =  LC  .AD  =  x\/2ax^ 

ax  —  x\ 

x\ 

This  will  be  a  max.  when  2ax^  —  x^  is  a  max.,  §79(2),  i.e., 
when  6aa;^  — 4x^  =  0,   .*.  x  =  ̂ a. 

The  triangle  is  easily  shown  to  be  equilateral. 
4.  One  corner  ̂   of  a  rectangular  piece  of  paper  ABCD  (Fig.  47) 

is  folded  over  to  the  side  BC.     Find  when  the  crease  EG  is  a  min. 

Let  AB  =  a,AE  =  x,  EG  =  y,  AGE  =  0.     Then  BEF  =  26. 

.-.'  BE:EF=(a-x)/x=cos  26    and     AE:  EG=x/y  =  sm  6. 
Eliminating  6  by  the  relation  cos  2^  =  1-2  sin^^,  we  find 

y'  =  2x'/{2x-a), 

from  which  y  is  found  to  be  a  min.  when  x  =  la. 

Fig.  46 

Similarly  it  may  be  shown  that  the  area  of  the  part  folded  over 
is  a  min.  when  x  =  ia. 

5.  To  cut  the  parabola  of  greatest  area  from  a  given  right 
circular  cone,  Fig.  48. 

Let  AB  =  a  and  KB  =  x.    The  area  =  ̂ ED  .  EG. 

Now  EF^  =  AE  .  EB=(a-x)x,  and  ED  is  proportional  to  x. 
.'.  area  varies  as  xV{a-x)x  or  ̂ /ax^-x*,  whence  x  =  la for  a  max 
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Examples. 

1.  x'-3x4-4,  min.  when  a:  =  |. 
2.  x*-5x*  +  5x'  +  l,  max.  whenx=l,  min.  when  a;  =  3. 
3.  a  +  b{c-x)^,  no  turning  value. 
4.  x'-2x'-4x  +  l,  max.,  when  x=  -§,  min.  when  x  =  2. 
5.  (x-l)'(x  +  2)Vmax.  when  a:=  -2,  min.  when  a;=  -f. 
6.  (1  +3x)/V4  +  5x^  max.  when  x  =  V. 

7.  (a:  +  2)V(a;-3)S  min.  when  a;  =13. 
8.  sin  ̂ 4- cos  d,  max.  when  6  =  \7c,  min.  when  <9  =  |;r. 
9.  sin  ̂ /(1+tan  0),  max.  when  d  =  i7:,  min.  when  ̂   =  f;r. 

10.  sin  6  sin{a-0),  max.  when  0  =  ̂ a. 

11.  sin'^  cos^<?,  max.  when  sin  6=  ±\/|~  min.  when  ̂   =  0. 
12.  Min.  value  of  a  tan  ̂   +  5  cot  0  =  2Vab. 

13.  Min.  value  of  a^  sec^O  +  h^  cosec^ d  ̂  {a  +  by. 

14.  Min.  value  of  ae^  +  be-^^  =  2Vab. 
15.  Max.  value  of  log  x/x  =  l/e. 

16.  What  is  the  longest  ordinate  of  the  curve  a^y^  =  x^{a^-x^), 
(Fig.  69)?  Ans.  ̂ a. 

17.  Find  the  max.  ordinates  of  the  curves 

{y-xy  =  x\  Fig.  30,    and     {y-x^y=x\  Fig.  31. 
Ans.  2V3^  4V5^ 

18.  Find  the  max.  ordinate  of  the  curve 

x*  +  y^  =  Saxy,  Fig.  28. 

Differentiating  the  equation  and  making  dy  =  0  we  have  x^  =  ay; 
from  this  and  the  equation  of  the  curve  we  find  the  max.  ordinate 

to  be  at  the  point  (a  -^2,  a  ̂4),  the  latter  coordinate  being  the 
required  value. 

19.  Find  the  max.  ordinate  of  the  curve  ?/'  =  x'  +  3ax^  Fig,  38. 
A71S.  '^4  a. 

20.  How  could  you  cut  out  four  equal  squares  from  the  corners 

of  a  given  square  so  that  the  remaining  area  (the  edges  being 
turned  up)  would  form  a  rectangular  box  of  greatest  volume? 

Ans.  Each  side  of  the  little  squares  =  i  of  a  side  of  the  given 
square. 

21.  Find  the  breadth  and  depth  of  the  strongest  beam  that  can 
be  cut  from  a  cylindrical  log  of  diameter  d,  assuming  that  the 
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strength  varies  as  the  product  of  the  breadth  and  the  square  of 
the  depth. 

Ans.  Breadth  =  ̂ VS  (^,  depth  =  ̂ V6d. 
22.  To  cut  out  from  a  given  sphere  the  cone  of  greatest  volume. 

Ans.  Ht.  of  cone  =  f  diam.  of  sphere. 
23.  How  could  you  cut  a  sector  out  of  a  circle  so  that  the  re- 

mainder of  the  circle  would  form  the  lateral  surface  of  a  cone  of 

max.  volume?  Ans.  Leave  Vf  of  circumference. 

24.  What  is  the  shortest  distance  of  the  line  y  =  x  +  2  from  the 

parabola  t/^  =  4x?  Ans.  ̂ V2. 
25.  Assuming  that  the  work  of  propelling  a  vessel  in  still  water 

varies  as  the  cube  of  the  speed,  what  is  the  most  economical  rate 
of  steaming  against  a  current  of  speed  v  ? 

The  expense  for  a  given  distance  varies  as  x^  and  the  time,  and 
the  latter  varies  inversely  as  x  —  v.  Ans.  |v. 



CHAPTER  XVIII. 

CURVATURE. 

8 1.  Direction  of  curvature.  Let  it  be  supposed  that  the 
tangent  of  a  curve  rolls  round  the  curve  in  such  a  way  that 
the  abscissa  of  the  point  of  contact  P  continually  increases. 

Let  the  tangent  make  an  angle  ̂   with  the  a:-axis.  Then  a 

+  value  of  d?y/dx^  (the  a;-rate  of  dy/dx)  at  P  implies  that 
dy/dx  or  tan  cj),  and  therefore  also  (j),  is  increasing  with  x, 
or  that  the  tangent  is  turning  in  the  positive  direction  as  x 
increases.  In  other  words,  the  curve  bends  upward,  or  is 

concave  upward,  when  d^y/dx^  is  +,  and  bends  downward, 

or  is  concave  downward,  when  d'^y/dx^  is  — . 
82.  Point  of  inflexion.     A  point  where  a  curve  has  ceased 

to  bend  upward  and  is  about 
to  bend  downward,  or  vice 

versa,  is  called  a  point  of  in- 
flexion. At  such  a  point  d^y/dx^ 

must  change  sign,  and  must 

therefore  become  0 ,  00  ,  or — 00  .  * 
^  *°*  ̂ ^'  A  tangent  at  a  point  of  in- 

flexion is  sometimes  called  a  stationary  tangent,  for,  if  the 

♦  It  is  assumed  in  the  above  that  x  is  the  independent  variable. 
If  y  is  the  independent  variable,  d^x/dy^  must  change  sign.  If  neither 
X  nor  y  is  independent,  the  quantity  which  must  change  sign  is  (§  70) 

{dxd^y-dyd^x)/dx\ 

82  "i 
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tangent  is  supposed  to  roll  round  the  curve,  it  comes  to  rest 
at  such  a  point  and  reverses  its  motion. 

83.  If  P,  Fig.  50,  is  a  point  of  inflexion,  the  secant  through 

P  and  a  point  Q  near  P  also  passes  through  another  point 

Q'  near  P.  As  the  secant  approaches  the  position  of  the 
tangent  at  P,  Q  and  Q'  approach  coincidence  with  P  at 
the  same  time.  Hence  the  inflexional 

tangent  is  sometimes  said  to  pass 
through  three  coincident  points  of 

the  curve.  A  tangent  at  an  ordinary 

point  on  a  curve  of  the  nth  degree 
cannot  meet  the  curve  in  more  than 

n  — 2  other  points;  the  tangent  at  a  _ 
point  of  inflexion  cannot  meet  the 

curve  in  more  than  n  —  3  other  points, 

and  in  not  more  than  n  — 4  other  points  if  the  point  of  con- 
tact is  also  a  double  point  (as  in  Fig.  27). 

Fig.  50. 

Ex.  1.  y={x-iy,  dhj/dx'  =  6{x-l).  This  is  -  when  x<l,  0 
when  x  =  l,  +  when  x>  1;  hence,  as  x  increases,  the  curve  bends 

downward  until  x  =  l,  and  upward  afterwards;  .*.  there  is  a 
point  of  inflexion  where  x  =  l.     Since  y  and  dy/dx  are  also  0 

Fig.  51. Fig.  52. Fig.  53. 

when  x  =  l,  the  axis  of  x  is  the  tangent  at  the  point  of  inflexion 
(Fig.  51). 

2.  y  =  {x-iy,    d'y/dx""  =  12{x-iy,    which    is    0    when    x  =  l, 
but  is  never  —   hence  there  is  no  point  of  inflexion  (Fig.  52). 
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|x-s 

0, 

which  becomes  oo    and 

*.  the  origm  is  a  point  of 

12(3a;2-2a;-l).      Putting   this 
-J,  x  =  l,  which  determine  the 

Ans.  (0,  0). 
(-1,0). 

(2a,  fa). 

(1,  0). 

(a,  0). 

3.  y'  =  x,  or  y  =  x^,  d'^y/dx^  = 
changes  from  +  to  —  when  x 
inflexion  (Fig.  53). 

4.  y  =  Zx'-Ax^-^x\  d^y/dx^ 
«=0  and  solving  for  x,  we  get  x 
points  of  inflexion. 

Find  the  points  of  inflexion  on  the  curves: 

5.  a'y  =  x{x^-a'),  Fig.  17. 

6.  xy  =  l+x^. 
7.  {x  +  ayy  =  a^x. 

8.  2/  =  a:(a:-l)(a:-2),  Fig.70. 

9.  x^  —  axy  =  a^. 
10.  {a^+x^)y  =  a^x. 

(0,0),  (±a\/3,  ±ia\/3). 
11.  y'  =  x'  +  3ax\  Fig.  38.  (-3a,  0). 
12.  x'  +  y'  =  a\  (a,0),  (0,a). 

13.  x  =  y'  +  Sy\  (2,  -1). 

14.  y'  =  x'{2x-l),  Fig.  33.  (i  i|\/3). 
15.  Show  that  at  a  point  {x,  y)  a  curve  is  con- 

vex or  concave  to  the  axis  of  x  (i.e.,  with  reference 

to  the  foot  of  the  ordinate)  according  as  y  d^y/dx^ 
is  +  or  — . 

16.  Show  that  the  curves  y  =  mix,  y  =  tan  x, 
meet  the  axis  of  x  in  points  of  inflexion. 

17.  Where  are  the  points  of  inflexion  of  the 

curve  y  =  cosx+i  cos  Sx  ? 
Ans.  Where  x  =  ̂ nn,  n  any  integer  not  divisible 

by  4. 
18.  On  the  witch  y^{a-x)  =  a^x  (Fig.  54),  show  that  the  points 

of  inflexion  are  (a/4,  ia/v^). 

Fig.  51. 

84.  Centre,  radius,  and  circle  of  curvature.  Let  P  and 

Q  be  two  points  near  one  another  on  a  curve  APQE, 

Fig.  55,  at  which  tangents  and  normals  are  drawn,  the 
latter  meeting  in  D.  The  limit  of  position  C  which  D 

approaches  as  Q  moves  towards  coincidence  with  P  is 
called   the  centre  of  curvature  of  the   curve   at   P,   PC  is 
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called   the   radius   of   curvature,  and   the   circle   with  C  as 
centre  and   PC  as    radius  is 

called     the     circle    of     curva- 
ture. 

The  extremities  of  an  infini- 
tesimal arc  are  called  consec- 

utive points  of  the  curve.* 
The  normals  at  consecutive 

points  are  consecutive  nor- 
mals. Hence  the  centre  of 

curvature  is  the  limit  of  the 

point  of  intersection  of  con- 
secutive normals. 

85.  Let   the   length   of  PC  Fig.  55. 
be  R.    Let  the  tangents  at  P, 

Q  make  angles  (j),  ̂   +  J(j)  with  OX,  then  J(j)  =  PDQ.  Let 
s  =  the  length  of  the  arc  of  the  curve  measured  from  some 
point  up  to  P,  Js  =  the  arc  PQ,  and  5  =  the  chord  PQ.  Then 
PD/q  =  smPQD/smJ(l).  The  limit  of  smPQD=l,  since 
the  limit  of  PQD  is  a  right  angle.     Hence  the  limit  of  PD= 

£to/sinJ0)  =  £(Js/i0)  (§17)   =ds/dcl>. 

.'.  R^ds/dcf). 

86.  Imagine  the  tangent  to  be  rolling  round  the  curve, 
the  point  of  contact  having  arrived  at  P.  Then  d<f)/ds  is 

the  s-rate  of  (f),  or  the  rate,  in  radians  per  unit  length  of 
the  curve,  at  which  the  tangent  is  turning.  This  rate  is 
taken  as  the  measure  of  the  curvature  of  the  curve;  hence 
l/R  measures  the  curvature  at  P.  Since  all  normals  of  a 
circle  intersect  in  the  centre  and  are  equal  to  the  radius, 
the  curvature  of  the  circle  of  curvature  is  constant  and 

=  1/R. 

*  The  point  consecutive  to  P  is  the  point  which  is  next  considered 
and  supposed  subsequently  to  approach  coincidence  with  P. 
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87.  The  circle  of  curvature  generally  crosses  the  curve  at 
the  point  of  contact,  since  in  the  circle  the  curvature  is  the 
same  on  both  sides  of  the  point  of  contact,  which  is  not  the 
case  in  the  other  curve  except  possibly  at  certain  points, 

e.g.,  at  the  vertex  of  a  conic  section,  where  the  circle  of  curva- 
ture does  not  cross  the  curve. 

88.  Length  of  the  radius  of  curvature.    We  have  seen  that 

7?    ̂
^ 

(1);      we  also  have  -i^=tan  ̂ . 

Differentiating  (2), 

dx  (Py  —  dy  d^x         o  ,   1 1      /ds\^ 

dxd^y—dy  d^x 
dx^ 

d<f)  = 

ds^ 

(2) 

(3) 

•.R  = 

dxd^y—dy  d^x' 

(4) 

We   may   generally  take  x  as  the  independent    v^ariable 
and  therefore  make  d^x=0;   also  ds^=dx^+dy^. 

R= 

(d^±dy^ 
dxd^y 

l^-m 

d^ 

dx^ 

(5) 

The  sign  of  R  when  found  from  (5)  will  be  +  or  —  accord- 
ing as  d^y/dx^  is  +  or  — ,  that  is,  according  as  the  curve  is 

concave  upward  or  concave  downward  (§81). 
If  X  and  y  are  given  in  terms  of  a  third  variable  7n  which 

is  taken  as  independent,  (4)  may  be  expressed  in  the  form 

dy  \  2-|t R [©+©] 
dx  d^y 
dm  dm? 

dy  d?x 

dmdm^ 

(6) 
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Ex.  1.  To  find  the  radius  of  curvature  at  any  point  {x,y)  of 

the  ellipse  — 2  +  Tj  =  1,  Fig.  56. 

By  differentiating  the  equation 
of  the  ellipse  we  have 

dy        b^x  d^y  b* 

dx        a^y'  dx^        a^y^' 
Substituting  in  (5),  we  have 

{ay  +  b'x'T^ R 

a'b' which  gives  R  in  terms  of  x  and 

y*  A  more  convenient  expres- 
sion may  be  found  by  substi- 

tuting y^  from  the  equation  of 
the  curve. Fig.  56. 

Then 

R=- 

{a'-e'x')l 
ab 

where  e  is  the  eccentricity  ̂ a^  —  b'^/a. 
It  is  known  that  (a^  — e^a;^)^  =  the  semi-diameter  parallel  to  the 

tangent,  or  perpendicular  to  the  normal,  at  (x,  y). 
Calling  this  61  we  have 

ab'
 

R 
(7) 

2.  To  find  R  at  the  origin  of  the  curve  ay^  —  Sax^y  =  x*,  Fig.  36, 
for  the  branch  which  touches  the  a;-axis. 

Let  y  =  mx,f  then  x  =  aim^—3m),  y  =  a{m^  —  3m^). 
Thus  X  and  y  are  known  in  terms  of  a  third  variable,  and  we 

require  R  from  (6)  for  m  =  0.     Differentiating, 

dx/dm  =  a{Sm^  —  S)=' —3a    for    m  =  0. 
d^x/dm^  =  6ani  =  0    for    m  =  0. 

dy/dm=a{^m^  —  6m)  =  0    for    m  =  0. 
d^y/dm^=  —6a. 

*  The  sign  ot  R  will  be  +  or 
f  See  foot  note,  p.  53. 

accordiaj 
2/  IS  +  or  — , 
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Whence,  from  (6),  R^^a. 
Similarly  R  =  2^a  for  the  other  branches  of  this  curve  at  the' 

origin  (m  =  N/3). 

89.  Coordinates  of  the  centre  of  curvature.     Let  the  co- 
ordinates be  a  and  /?.    Then,  Fig.  57, 

«-^  a  =  x-R  sin  (j) 

dy  ds^ 

dxd^y—dy  d^x 
=  x  —  it  -r  =  x- as 

^  =  y  +  R  cos  (j) 

(1) 

dx  ds^ 

.   (2) 

Fig.  57. Evolute — Involute.  The  locus  of 
the  centres  of  curvature  of  a  curve 

is  another  curve  which  is  called  the  evolute  of  the  given 
curve,  and  the  given  curve  is  called  the  involute  of  the 
evolute. 

Ex.  To  find  the  centre  of  curvature  for  any  point  {x,  y)  of  an 
ellipse,  and  the  equation  of  the  evolute. 

If  x  is  the  independent  variable,  (1)  and  (2)  become 

1  + 

dyy 

a  =  z D 
dy   

dx      d^y 

dx^ 

1  + 

dyV 

/?=2/+. 
\dx) 

d^      ' 

dx' 

which  for  the  ellipse  give 

Solving  for  x  and  y  and  substituting  in  the  equation  of  the  ellipse 
we  obtain 

for  the  equation  of  the  evolute  (see  Fig.  56).    If  x  and  y  are  sub- 
stituted for  a  and  /?,  the  equation  becomes 

(ax)i  +  (6i/)*  =  (a'-6^)». 
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90.  Properties  of  the  evolute.  (1)  Every  normal  of  a 
curve  touches  the  evolute  at  the  centre  of  curvature. 

a  =  x  —  R  sin  <j),     .'.  da  =  dx  —  R  cos  <f>  dcp  — sin  cj)  dR. 
But  dx=ds  cos  (j)=R  d(j)  cos  <j). 

.'.  da=-  —sin  (f)  dR.  (1) 
Similarly  d^=     cos  cj)  dR.  (2) 

.*.  dj^/da^  —cot  ̂ =  —dx/dy. 

Hence  the  tangent  of  the  evolute  at  (a,  ̂ )  has  the  same 
slope  as  the  normal  at  {x,  y)  on  the  involute,  and  (a,  /?) 
is  on  both  lines,  therefore  they  coincide. 

tiG.  58. 

(2)  As  long  as  the  radii  of  curvature  of  a  curve  continue 
to  increase  or  to  decrease,  the  difference  of  any  two  is  equal 
to  the  arc  of  the  evolute  included  between  them. 

Let  the  arc  of  the  evolute  be  S.     Then 

dS=Vda^+d^^=±dR, 

from  (1)  and  (2) .  Suppose  R  to  be  increasing.  Then  dS = dR, 
hence  S  and  R  can  only  differ  by  a  constant,  and  therefore 
any  increment  of  S  is  equal  to  the  corresponding  increment 
of  R.  Similarly  if  R  is  decreasing,  the  increment  of  S  is 
equal  to  the  decrement  of  R. 
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From  these  properties  of  the  evolute  it  will  be  obvious 
that  if  one  of  the  tangents  of  the  evolute  were  supposed  to 

roll  round  the  curve,  a  tracing-point  in  it  would  describe 
the  involute.  Thus  although  a  given  curve  can  have  only 

one  evolute,  it  can  have  any  number  of  involutes.  The 

involute  might  also  be  described  by  a  tracing-point  in  a 
string  which  is  kept  stretched  at  the  same  time  that  it  is 

unwound  ("evolved'')  from  the  evolute. 

Ex.  The  radii  of  curvature  at  the  extremities  of  the  axes  of  an 

ellipse  are,  §  88  (7),  a}/h  and  h'^/a.  Hence  the  whole  length  of  the evolute  is 

I 

(f-^-K^i 
Examples. 

1.  At  any  point  of  the  parabola  y^  =  4ax  show  that  R  =  -2VrVa, 
where  r  is  the  focal  distance  {^a-^x)  of  the  point.     Hence  it  may 

Fig.  59. 

be  shown  th!*t  /?==  twice  the  intercept  on  the  normal  between  th 
directrix  and  the  curve. 

2.  Prove  that  for  i/  =  4ax,  a  =  2a  +  3x,  /?=  -y^/4a\ 
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3.  Show  that  the  e volute  of  the  parabola  is  the  semi-cubical  pa- 
rabola 27ay'  =  4:{x-2a),  Fig.  59. 

4.  Show  that  (7,  C"  are  (8a,   ±4V2a),  and  that  they  are  the 
centres  of  curvature  of  B',  B. 

5.  Show  that  the  arc  AC-2a(3v'3-l). 
6.  Show  that  R -^  {I  +  a^Y^ /2h  at  the  origin  on  the  curve 

y  =  ax  +  bz^  +  cx^  +  .  .  . 

or  x  =  ay  +  by^  +  cy^  +  .  . . 

7.  Find  R  at  the  origin  of  the  following  curves: 

(1)  The  parabola  y^  =  4:ax,  or  x^  =  4:ay.  Ans.  2a. 

(2)  y''  =  x\l+2x),  Fig.  32.     We  have 

y  =  x{l+2x)^  =  x{l+x-\x'^  +  . .  .).  ±V2 
(3)  2/^  =  a:^(l+2a:),  Fig.  34.  ±i. 

(4)  (2/-x^)^  =  x^Fig.31.  i 

(5)  {y-xy  =  x\Y\g.ZO.  0. 

8.  Find  the  R  oi  x  =  y^  +  y^  when  x  =  2.  Ans.    -  VV26. 
9.  Find  R  at  the  point  of  maximum  ordinate  on  the  curve 

y^  =  x^-  +  3ax\Fig.S8,      _  Ans.   -^2a. 

10.  Show  that  R  =  2  V'2a  on  the  branch  of  the  curve  ay^  —ax^y^^ 
x^,  Fig.  37,  which  touches  y  =  z  at  the  origin. 
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x«,^ 

x,^-- —
 

Fig.  60 

11.  The  equation   (-)    +(t)    =1  represents  a  common  parab- 

ola, the  origin  being  a  point  on  the  directrix,  and  the  axes  tan- 
gents to  the  curve.     Show  that  R  =  2{ax  +  by)i/ab. 

[Fractional  indices  may  be  avoided  by  using  a;  =  a  cos^/9,  y  =  bs\n*d.'\ 
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12.  Find  R  at  any  point  of  the  curve  x  =  a  cos  0,  y  =  a  sin  d. 
.  13.  In  the  hypocycloid  xi  +  yi  =  ai  (Fig.  18)  show  that  R  =  3'^axy 
=  3  times  the  perpendicular  from  the  origin  on  the  tangent  (Ex. 
3,  p.  46). 

14.  Show  that  the  radius  of  curvature  at  any  point  of  the  cycloid 

x  =  aiO-sm  0),  y  =  a{l-cos6)  is  -4a  sin  i^  =  twice  the  normal 
PB  ̂ Fig.  60). 

15.  Also  that  a  =  a(^  +  sin  0),  ̂ =  — a(l  — cos  0),  and  hence  (see 
Fig.  20)  that  the  evolute  is  an  equal  cycloid. 

16.  Show  that  R  =  cc  at  a  point  of  inflexion. 

17.  At  any  pomt  of  a  curve  R=    ,  -     ̂   ,  -~   1 .    (See 
^  ̂   V{d'xy  +  {d'yy-{d'sy 

Ex.  16,  p.  70.) 



CHAPTER  XIX. 

INTEGRATION.     ELEMENTARY  ILLUSTRATIONS. 

91.  Prop.  The  limit,  when  n  is  infinite,  of  the  sum  of  n 
infinitesimals  of  the  same  sign  is  not  changed  if  the  infini- 

tesimals are  replaced  by  equivalent  ones  (§  15). 
Let  the  given  infinitesimals  be  0:1,0:2;  •  •  •  and  let 

/?i,  /?2)  •  •  •  be  equivalents.  By  a  theorem  of  algebra 
(A+/?2  +  - •  •  )/(^i+«2  +  - •  •  )  lies  in  value  between  the 

greatest  and  the  least  of  the  fractions*  pi/ai,  P2/0C21  ••• 
But  each  of  these  fractions  =  1  by  hypothesis.     Hence 

£(/?i+/?2  +  ...)  =  £(ai+o:2  +  ...), 

or  £ip=£Ia. 

Hence  (§  16)  the  limit  of  the  sum  depends  only  upon  the 
infinitesimals  of  the  lowest  order. 

92.  In  particular,  if  7/  is  a  function,  and  Jy  and  dy  the 
infinitesimal  increment  and  differential  corresponding  to 
the  infinitesimal  increment  of  the  variable,  then  (§  42) 

Jy  =  dy  +  I,  and  hence  £1  Ay  =  £I  dy.  This  will  be  further 
considered  in  the  following  article,  and  a  special  notation 
will  be  employed  for  the  limit  of  a  sum. 

*  Let  ̂ n/oin  be  the  greatest  of  the  fractions,  and  let  it  =  r.  Also 
suppose  the  a's  to  be  all  positive.     Then 

^i<rai,     ̂ 2<ra2,    .  .  .  ,     ̂ n^ran,  .  .  . 

Hence,  the  symbol  I  indicating  the  sum  of  all  terms  of  a  single  type, 

I^<rla,     or     I3/Ia<r. 

Similarly  I^/Ia>  the  least  of  the  fractions. 93 



94  INFINITESIMAL  CALCULUS.  [Ch.  XIX. 

93.  Let  F(x)  be  a  function  of  x,  j(x)  its  derivative,  and 

suppose  F{x)  and  f{x)  to  be  continuous  from  x  =  a  to  x=h. 
When  X  changes  from  a  to  6  the  change  in  F{x)  is  FQ))  —  F{a)f 
or,  in  symbols, 

[F{x)y  =  F(b)-Fia). 
Suppose  that  x  changes  by  the  successive  addition  of 

infinitesimali  ncrements.  When  x  has  the  increment  dx] 

the  corresponding  increment  of  F(x)  is,  §  42  (2),  f{x)  dx  +  I, 

where  I  stands  for  the  higher  infinitesimals.  Hence  F{b)  — 
F{a)  =  the  limit  of  the  sum  of  all  such  terms  as  f{x)  dx,  while 
X  changes  from  a  to  b,  dx  approaching  its  limit  0  and  the 

number  of  terms  being  infinite.  Let  this  sum-limit  be  ex- 

pressed by      /(x)  dx.    Then 

\'f(x)dx=[F{ic)'t  =  F{b)-F{a), 
Hence,  f{x)  being  a  functiori  of  x  which  is  continuous  from 

x=a  to  x=b,  to  find  the  limit  of  the  sum  of  all  such  terms 

as  fix)  dx  when  x  changes  from  a  to  6  we  must  seek  the  func- 
tion F{x)  of  which  the  differential  is  j(x)  dx,  substitute  therein 

b  and  a  successively  *for  x,  and  subtract  the  second  result from  the  first. 

This  process,  which  is  analogous  to  summation,*  is  called 
integration  (the  making  of  a  whole  from  infinitesimal  parts) ; 
F(x)  is  called  the  integral  of  f(x)  dx,  and  f{x)  dx  is  called 
an  element  of  the  integral;    a  and  b  are  called  the  limits  f 

of  the  integration;      f{x)  dx  is  read  ''integral  from  a  to  6 

(or  between  a  and  b)  of  f{x)  dx.*' 

♦  Historically,  the  symbol  /  is  the  old  form  of  the  letter  s,  the  initial 
letter  of  the  word  sum. 

t  This  meaning  of  the  word  limit  is  not  the  same  as  that  employed 
elsewhere.  It  here  signifies  a  value  of  the  variable  at  one  end  of  its 
range. 
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It  should  be  noticed  that  dx  is  here  regarded  as  an  in- 
finitesimal increment  of  x,  and  that  the  element  or  differ- 

ential f(x)  dx  is  (§  42)  the  increment  of  the  function  F(x) 

Fig.  62. 

when  the  higher  infinitesimals  are  omitted  or  disregarded. 
The  practical  applications  of  integration  depend  upon  the 
fact  that  the  element  can  be  written  down  when  F{x)  is 
unknown. 

Illustrations. 

94.  Areas  of  curves.  Let  y=f(x)  be  the  equation  of  a 
continuous  curve  CD.  Let  OA^a,  OB=h,  OM  =  x,  MP=y, 
MN=dx,  RQ=Jy,  and  let  it  be  required  to  find  the  area 
ABDC, 

When  x  has  the  increment  dx,  the  increment  of  the  area  is 

MNQP  =  rectangle  MR  +  PRQ.  MR  -  y  dx,  and  PRQ  <  SR 
which  =  da:  Jy  and  is  therefore  a  higher  infinitesimal.  Hence 
the  element  of  the  area  is  y  c?x.* 

.-.  the  area  ABDC=  T?/  dx=  ['/(x)  dx^[F(x)']\ 

where  F(x)  is  the  function  of  which  the  differential  is  f(x)  dx; 

e.g.,  the  function  of  which  the  differential  is  xMx  is 

.71+1 

n  +  1 

except  when  ?i=  —  1,  in  which  case  it  is  log  x. 

*  Observe  that  the  omissio  ;  c  f  the  higher  infinitesimals  is  equiva- 
lent to  supposing  y  to  remain  constant  while  x  increases  by  dx.  More 

generally,  the  element  of  dx{Pi-\-\){P2-\-i2)  ...  is  dx .  P^Pn  •  .  .  ,  and 
P,,  P,. .  .  .  may,  in  obtaining  the  element,  be  regarded  as  constant 
while  X  changes  to  x-\-dx. 
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In  other  words,  we  imagine  the  area  to  be  divided  into 

narrow  strips  by  Hnes  drawn  parallel  to  OY,  express  the 
area  of  a  strip  as  a  differential  or  infinitesimal  element  (all 

infinitesimals  of  an  order  higher  than  the  first  being  omitted) 

and  then  integrate.  The  whole  area  is  seen  to  be  the  limit 

of  the  sum  of  the  rectangles  as  their  breadth  =0  and  their 
number  becomes  infinite. 

Ex.  1.  To  find  the  area  OBD  of  the  curve  y  =  x\  Fig.  63,  the 
limits  of  z  being  0  and  1. 

The  area  =     ?/da:=     a;^  c?a:  =  [  ia:M   =i,    i.e.,    the   area  is   one- 
Jo  Jo  •-      -'o 

fourth  of  the  square  on  OB. 

Fig.  64. Fig.  65. 

2.  The  area  of  the  parabola  y^  =  Aax,  Fig.  64;    from  a;  =  0  to 

I  ydz=\  V^.x^dx=[^/^.lxf\ 
Jo  Jo  ^  -'o 

=  §\/4o  .  ;i3  =  P  Vio^  =  iOB  .  BD 

=  two-thirds  of  the  rectangle  having  the  same  base  and  height. 

3.  The  area  of  the  curve  y  =  sin  x,  Fig.  65,  from  a;  =  0  to  x  =  ;r  is 

sin  X  dx  =  I  —  cos  x  1   =  2, 
Jo  ^  -'o 

i.e.,  twice  the  square  on  the  maximum  ordinate. 

95.  Volumes  of  solids  of  revolution.  Suppose  the  curve, 
Fig.  61,  to  revolve  about  OX  and  generate  a  solid.  The 

rectangles  MR,  MQ  generate  cylinders  of  infinitesimal  thick- 

ness dXf  and  radii  y,  y-hJy,  and  therefore  of  volume  ny^dx, 
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7z{y-\-Ay)^dx.     The  \siiier  =  7zy'^  dx  when  the  higher  infinitesi- 
mals are  omitted.     Hence  the  volume  element  =  rr^/^  da;. 

.'.  the  whole  volume =  71    ?/^  dx. 

In  other  words,  we  imagine  the  solid  to  be  divided  into 

thin  blices  by  planes  perpendicular  to  OY,  express  the  volume 
of  a  slice  as  a  differential  or  infinitesimal  element,  and  then 

integrate.  The  whole  volume  is  thus  the  limit  of  the  suhi 

of  cylinders  of  volume  rty^dx,  i.e.,  of  the  cylinders  formed 
by  the  revolution  of  the  rectangles  of  Fig.  62. 

Ex.  1.  The  volume  formed  by  the  revolution  of  OBD,  Fig.  63, 
round  OX  is 

Jo  Jo  *-  0 

2.  When  the  area  of  the  parabola  y^  =  4:ax  from  x  =  0  to  x  =  h 
revolves  about  OX  the  volume  is 

;r     y'dx  =  7z\   4ax dx  =  7:\  4a  .  ̂x' \   =hr^{4ah)h  =  ̂ 7zBDKOB, 
Jo  Jo  *-  0 

i.e.,  one-half  of  the  cylinder  having  the  same  base  and  height. 
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96.  We  have  seen  that 

\'f{x)dx=[Fix)']\ J  a  L.  -ifl 

F(x)  being  the  function  of  which  f(x)  dx  is  the  differential. 

If  the  Hmits  are  not  expressed,*  we  may  write 

J j{x)dx  =  F{x), 
and  hence      may  be  regarded  as  a  S)nnbol  which  indicates 

the  operation  of  going  from  the  differential  f{x)  dx  back  to 
the  primitive  function  F{x),  or  of  finding  the  antidifferential 
of  j{x)  dx,  or  the  antiderivative  of  f{x).  By  this  operation 
w^  can  discover  only  the  variable    part  of  the    primitive 

function;   e.g.,  \2xdx  =  x^,  or  x^  +  1,  or  a;2  +  c,  where  c  may 

be  any  constant  (any  quantity  independent  of  x).  To 
every  integral  thus  obtained  from  a  differential  there  should 

.'.be  added  a  constant,  the  value  of  which  must  depend  upon 
special  data;  we  should  then  write 

{f{x)dx  =  F(x)+c. 

*  The  integral  is  said  to  be  definite  when  the  limits  are  expressed, 
indefinite  when  they  are  not  expressed. 

98 
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If  we  are  hereafter  to  substitute  limits,  the  constant  c 
need  not  be  expressed,  inasmuch  as  it  would  disappear  in 
subtracting.  We  shall  accordingly,  as  a  rule,  omit  the 
constant,  but  its  presence  is  always  understood. 

97.  The  various  processes  by  which  integrals  are  obtained 
consist  almost  entirely  in  so  changing  the  form  of  given 
differentials  as  to  make  them  appear  as  particular  cases  of 
the  fundamental  ones  given  below. 

Differentials. Integrals. 

c?(ij")  =  nt;"'~i  dv 
(A), 

2v  V 
(B), 

.  2V V 

(Bi), ,   'dv          1                    rh\ 

d{a^)=Aa^dv 
(E), .'.  a^dv  =  a^/A, 

•'                A  =  loge  a     (e) 

d{e'>)  =  e'>dv 
(F), .".   e''dv  =  e^                       (/) 

d(\ogv)  =  -^ 
(G), 

{dv     , 

d{sm  v)  =  cos  V  dv (H), .'.  cos  1;  di;  =  sin  v           (h) 

d(cos  v)=  —  sin  V  dv 
(I), 

.'.  sin  i;  c^i;  =  —  cos -y        (^) 

d(tan  v)  =  sec^i;  dv 
(J), 

.'.   sec2i;c?'y  =  tan'u           (/) 

d(cot  v)=  —  cosec^i?  dv 
(K), *.  cosec^i;  dv=  —cot  v  (k) 
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Differentials.  Integrals. 

d(sec  v)  =  sec  v  tan  v  dv  (L) ,  /.  sec  i;  tan  vdv  =  sec  v  {I) 

rf(cosec  ,t?)  =  —  cosec  v  cot  v  dv  (M),  .*.  cosec  v  cot  v  dv •'  =  —  cosec  V  (m) 

rf(sin-i-    =— 7==  (N),  .-.  -7=z==sin  1-      (n) 

7 A       i^\       cidv  .-r,.      .  !    dv         1         .V       ,  . 

'/        ,v\         adv  fcw     .  {       <^^  1         1^/  \ d(sec-i-    = — 7====  (Q),  ..       /=^=-sec-i-(flr) 

To  these  may  be  added :  * 

\-~^^==\og{v-^V^^^±^^), 
jVv^±a^ 
(    dv  1  ,      /a-\-v\        ,  ̂, 

J  i;\/  a2  ±  -yz     a     ̂   \a + \/a2  ±  i;2/ 

We  add  the  hyperbolic  equivalents  of  (r),  (s),  and  (0. 

f      dv  •    1     1  V 

,  =sinh~^— > JvV+a2  a 

1 

and 

(r) 

(») 

(0 

dv  1     1  V 

,    .      =cosh~^— > 

*  Formulae  (r),  (s),  (0  shoiild  l)e  committed  to  memory  with  the 
others,  as  they  are  of  fundamental  importance.  It  will  be  seen  latei 

that  they  may  be  deduced  from  the  preceding  formula?.     Compare" 

carefully  (n)  and  (r),  (p)  and  (.s),  (q)  and  (0.     Notice  that   /*— ̂ , 

J  v'—a- 
—  —  /  -=   =  and  is  therefore  known  from  (s). 

.1 
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and 

dv 
.2  ̂   /})2 

1  V 
=  —  tanh~i— ,     'y|<  la, a  a 

a  a v\>\a, 

dv 
■=   sinh  1— 

dv 

1  I  -1^ 

—  cosech  ^ — f a  a 

'  —  =   cosh~i— =   sech~i — 
yVa^  —  v^         ̂   V  a  a 

(sO 

(^0 
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FUNDAMENTAL  INTEGRALS.    IL 

Examples.    Formula  {a)  to  (g), 

1 .     ax^dx  =  lax*,     {ax^  +  b)  dx  =  \ax*  +  bx, 

C2dx      C       ,  ,       2x-^         1      fdx 
1      fdx         I 

x 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

(x 

'-a'ydx=  Ux*-2a'x'  +  a')  dx  =  ix'-Wx'  +  a'x. 

ix'-2)ixdx  =  ̂ {{x'-2y^d{x'-2)  =  Ux'-2)i. 

xdx 
^=  _  f  ̂J^).  -V^^37^  by  (6). 

a'-x*         -J    a^-x^ 

(l-a;»)'         fl-2x'  +  a:*   dx  =      ax 

i -i\og{a'-x'),hy(g). 

-f 

=  I  (   2x  +  xAdx 
=  log  x-x^  +  Jx*. 

c-"^rfx-  -ife-2^rf(-2x)=  -^-^^  by  (/). 

xc-^  dx  -  -  i  I  e-^' d(  -  x')  =  -  ie-^^ 

axidx  — ?axJ. 10.     x-Mx=-3x-i. 
102 
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13.  \V2ax-x^{a-x)dx  =  U^ax-x^)L 

14.  ̂ea^dx  =  eaya.  15.  |^  =  log(^). 

16.      7   74=^7   \i-  1^°        ;=-C?a;  =  -7=(x  +  2). 

r    dx  f^ 
— j   =loff(logx).  21.       adx==a^, 

SVxdx  =  U.  23.      a:-icix  =  2.    24.       ̂   =  i* 

r««  ̂ T  f*  1 
25.         -  =  1.  26.        e-«^c^a:  =  -. 

Ja    ̂   Jo  « 

27.   r(ax  +  l)(^a;  =  ia'-a~2.  28.    \e^dx  =  e-l, 

fi  1  rsa    ,   

Jo  ̂   +  1  Ja 
29 

31.  |"__(a±.)»^=(^'.         32.j;,^.  =  ilog2. 
°"  rfX_^   1^ 

x)^~  {n-l){2a)^- 33.   [    7-|V--.       .w^..„_,.     n>l 

^- 1> 34.       {a  +  bx  +  cx^)xJx  =  j\{6a  +  4:b  +  3c). 

*It  is  implied  in  §  92  that  a  and  b  are  assigned  values  of  x.     In 
'     —^  when  &  is 

infinite. 
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„^      (ha      xdx  1  „^      f"      Xdx  ,    ,- 
35.        71   rrj  =  J-2-  36.         .   =q  V2-1). 

r^-^^cix  =  i(log2)'.  38.    rx^e-^dx  =  h Ji     ̂   Jo 

fa  fSa       ̂ x 
{a-xyxidx  =  j\%al.  40.           .           =2>/2a. 
Jo  Jo  V2a~x 

f«  (a— a:)6?a;  f^ 
41.        \       ̂      =a.  42.       3»^dx  =  26/log27. 

37 

39 
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FUNDAMENTAL  INTEGRALS.     III. 

Examples.    Formula  (h)  to  (m). 

1.  IsinSd  dd  =  Usin3d  d{3d)=  -^  cosSe. 

2.  I  cos  56  cos  3^  dO  =  ̂   |  (cos  8^  +  cos  26)  dd 

,  /sin  8^    sin  2^\ 

o^r        d6  Csec'6d6      fd  tan  ̂      ,      ,        .x 

^•*J  sin  ̂   cos  r  J  -taiTT"  =  J  "t^i^  =  ̂̂ ^  ̂^^^  ̂)- 

"•  J  sin  ̂   ~  J  2  sin  i^  cos  ̂ 6  ~  J  sin  ̂ 6  cos  ̂ ^  ~  ̂̂ ^  ̂^^"^  ̂ ^' 

by  Ex.  3. 

or  =log  (sec  ̂   +  tan  ̂ ).t 
> 

*  Integrals  3-11  deserve  special  attention  on  account  of  their  fre- 
quent occurrence. 

t  This  important  integral  may  also  be  treated  as  follows: 

/•  r      sec' 6  dd /  secOdO=  /      ,  =log  (sec  ̂ +tan  6),  by  (r). 
•^  *^  Vlan^^+1 

The  integrals  of  Exs.  5,  4,  3  may  also  be  expressed  thus  (see  foot- 
note, p.  36): 

J  COS  6  J  sm  0  "   "  J  sm  0  cos  U 

Numerical  valu2s  of  X{6)  are  given  at  the  end  of  the  book. 
105 
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6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

15. 

17. 

18. 

19. 

20. 

21. 

i&nddd 

cot  d  de 

sin 

INFINITESIMAL  CALCULUS 

sin  e  dd 

cos  0 

cos  Odd 

sin  6 

ICh.  XXII. 

""S  Ir  =  -log  cos  ̂   =  log  sec  0. 

fcos  -  v.-  ,  .  f. 
=  —. — H— =  log  sin  0. 

.   J    sin  <?  ^ 

xyx'Q  dO  =  \[{X-Q,os2Q)dQ==\{Q-\sm2Q\ 

2^rf^  =  ̂ j*(H-cos25)d^  =  i(^  +  isin2^) 

l'^  de  =  f  (sec^/?  - 1  )rf(9  =  tan  ̂   -  <?. 

sin2^cos2^^^  =  i 

cos 

tan 

cos  0  dd 

sin'^ 
=  |'(sin<?) 

I  sin  22^  do  =  ̂ {{1- cos  4:d)d9 

1(0 -I  sin  4.0), 
1 -^d(sin^)  = 

"4  sin*^* 

cos(3^-l)d^  =  J  sin  (3^-1).     14.   |'sec24^  (i5  =  l  tan  4^. 

sin''!? cos ^„de  =  ita,n*e. 

■
l
 

16.   \cos^nedO  =  ̂0  +  i{sm2ne)/n,\ 

do sin  ̂   +  cos  6 

vTTcos^  d^  =  2n/2  sin  i^. 

-n/ITcosI 

i\/21ogtan  (i7r  +  i^)  =  iv^>l(^-W. 

V2  log  tan  i(;r  +  ̂)  =  \/2  A(i^). 

Vlisin  d  do  =  2{am  ̂ 0^  cos  i<?) 

do 1+C08^ =  tan  id.  22.   L^^.^^  =  tan  {^0  -  In). 
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23.  [sin  5^  cos  3^  ̂ /9=  -i  (cos  2^  + i  cos  8^). 

24.  [sin  3^  sin  20dd  =  ̂   (sin  0  -i  sin  5^). 

25.  [sin'^  dd=  [(1  -cos^^)^  sin  ddO=  -cos  ̂   +  f  cos^^-i  cos'^. 

26.*jsin^^rf^  =  j(l-^f^yc?^ 

=  i|[l-2cos2^  +  Kl  +  cos4^)]  =  p-isin2^+^sin4^. 

27.    [tan^^f/^^  [(sec^^-l)  tan  ̂   £/^  =  i  tan^^  +  log  cos  ̂ . 

„^     fsin^'^ci^         f(l-cos2^)<fcos^ 28-       ^^— =  -    ̂   h   =  sec^  +  cos^. 
J  cos^^  J  cos^/? 

.    \Gos*dsm'edd=  -  [cos^/?(l-cos2^)  dcosd=  -i  cos'^+j  cos'^. 

r        <f^  fsin  hO 
•    h    27) — -T/)  =  tan  ̂ -cot /?.      31.      — -^  rf^  =  log  tan  i(;r  +  ̂ ) 
Jsin^^cos^^  sm  ̂   ,^°^^      *^         '' 

fsin^^  dd 
32.  cos^    -log  tan(i7r  +  i^)-sin  ̂ =  A(^) -sin  (?. 

33.  [ — ^=  [(l+tan2(9)sec2|9(/^  =  tani9  +  ̂tan3^. I  COS  (/        I 

34.  y  sin  6  dO  =  2.  35.    [''cos  ̂  ci^^O. Jo  Jo 

Ci^    do  Ci^ 
36.          ^  =  1.  37.        tsLR' Odd  =  1-^7:, 
J^cos^^  Jo 

38.        sin2^rf^  =  i7r=      eos^^d^.  39. 
Jo  Jo  Jo 

29 

30.   \.. 

\/2-l. 

cos^(9 

*  Compare  the  methods  in  Exs.  25  and  26  according  as   the  index 
is  odd  or  even. 
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40.   [*'-^/,  =  i  log  2  =  -347*.        41.   f  \ec'd  tan  d  de  =  2Ji. 

42.  f    coi'O do  =  i{l-\og2)=' 153. 

43.  tan^^d^  =  -119. Jo 

44.  [*^^^  =  ilogtanA7r=-658  =  iA(i;r). 
Jo 

45.  [  sec  ̂ J^  =  -521. 

J^     0  +  sm  0  ^  \^  +  ̂ / 

*  Use  the  tables  at  the  end  of  the  book. 



CHAPTER  XXIII. 

FUNDAMENTAL  INTEGRALS.    IV. 

Examples.    Formula  (n)  to  (f). 

This  is  (s). 

^     f      dx            If      ci(a;V3)            1      .        /  V3\ 
2.     —     = — isin-Ma:   ) 

jV4-Sx'    \/SJ^2^-{xVsy    V3  \     2/' 

'  J  V2ax-x^~J  \/a^-{x-ay~^^^     \    a   /' 
r-     f       dx  f      d{x±a).         ,      ,  /— — - — ,  . 
5.     -7-  =  '        :^=log{x±a  +  Vx'±2ax). 

)Vx'±2ax    }V{x±ay-a' 

^'  }2ax-x'^2~a^^^  \2a^) '       ̂'  ]x^  +  2ax^2a^^^  V^M^a/' 

I     8    ̂       dx       _^       dx       _     l(    ̂W       __^  sii^-Y^'j  * 

1  a; 
*The  integral  is  also  -sec-^— .  These  apparently  different  re- 

sults differ  only  by  a  constant  (in  this  case  7r/2a),  and  therefore  have 
the  same  differential. 

109 
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In  a  similar  manner  deduce  (t)  from  (r)  and  {f)  from  (r'). 

n.   f-^^  =  ̂ sin-Y^:).         12.    [^^  =  tan-e^. 
)\/a*-x*  W/  je^  +  e-^ 

.^     {      dx  ,  . ,     {      dx 
■    13.  =sec-^e^.  14.     — = 
jVe^^-l  JVl-, 

=  tan-U2a;-l). 

16.  ,  —  =  sm-M — 7^). 

^^    [        dx  .  ̂    ,/2a:  +  l\ 
17.  ,  =smh-M — Tt^l. 

jg    fc?x  \/x'^-a
^ Vx^  —  a^  —  a  sec-'—. a 

[Rationalize  the  numerator.] 

19.   I   =  Va^-x^-asech-'- a 

20.   \dx    l^LZl^V^^^^+a^-       "^ a 

X  X 

sec-*  — +  cosh-'— . a  a 
21.   fe    lit?, 

J  a:  Sjx  —  a 
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25.    ['-7^''-  =  ̂   tan- 3  =  -624.    26.    f  ̂^  =  i7r  =  -785. 
rl      fix       

27.       ̂ ^_^^^-,  =  jWlOtan-'  {W^0)='318. 

r     2*  it  or  C^      doc 

2S-  j'i_-4  =  ilogi=-128.  29.  j^^^^^  =  ilogf=-128. 
r "  X  fjx  r  ̂   c?x 

30.    I    ̂rp4  =  itan-^f==-161.      3L    I    ̂F^  =  i  tan-^  f  =  -322. 

32.   f"--f?=.  =  i;r  =  -785.         33.    f -^i^  =  A^  =  -262. 



CHAPTER  XXIV. 

INTEGRATION  OF  RATIONAL  FRACTIONS. 

98.  An  algebraic  fraction  is  rational  when  it  contains  nc 
surd  expressions  involving  the  variable. 

//  the  fraction  is  improper,  it  must  first  be  reduced  to  a  mixe 

quxintity. 

Ex.1.  r^.  =  ̂ ^-l+I^r     .•.Ji^3  =  i^'-^  +  tan-a:. 

When  the  fraction  is  a  proper  fraction,  it  should,  in  gen- 
eral, be  decomposed  into  partial  fractions.  See  Appendix,] 

Note  A. 

x'  +  Sx  +  l 

Examples. 

115       1        1        1 

x{x-\){x  +  2)        2     a;  '  3   x-l     6     x  +  2 

•'•  |j(x-l)(a;  +  2)^^'^~^^^^^"^^  log(a:-l)-ilog(a;  +  2) 

ilog 

vVT2x3 

f(i+3x)^^rA   1  2    \ 

^'  ]x-^2x'-^x^     ]\x      l+a:"^(l+x)V''^ 

-logx-log  (l+^)--^  =  log  (^)  -^. +x 
112 
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r         dx   C  dx    /    I   1_\   !_         /x-a\ 

'  ̂{x  —  a){x  —  h)    ̂ a  —  h\x  —  a    x  —  hl      a  —  b     ̂   \x  —  b/ 

113 

'Mx-b) 

C        dx  .       /l+2^\ 

e.J {2x  +  l)dx log( 

x{x  +  l){x  +  2) 

f      dx  1     J_  _j 

^-  ]x\l+x')~  x'Sx'^^^"" 

x  +  1)     I   ^_ 

x. 

9.    Pff  o!lt-3a:  +  ll  log  (a:-2)-  2log  (x-l). 3a:  +  2 

rc^  dx C  X  dx  ^ 

J  l+x  +  x^'  +  a;^        ̂      14.^ 

r    2a;  ̂ a:                 l\-^x\h 

^^    J(l+x2)(3  +  x^)^^^^  V3+a;V   * 

^^'  J(x^  +  3x  +  2)""^  =  x='  +  3a;  +  2+^^^S  U  +  2;* 



CHAPTER  XXV. 

INTEGRATION  BY  SUBSTITUTION. 

99.  To  assist  in  bringing  certain  differentials  under  forms 

already  considered  various  substitutions  are  employed,  the 

most  important  of  which  will  be  mentioned  in  this  chapter. 

^      ̂      (      dx  ^   ̂         1    ̂,         -  dz        .  dx         dz 
Ex.  1.       n -•     Let  x=—,  then  dx=  —  -y,  and  —  =   . 

^ax  +  bx^  z'  z^  x  z 

Substituting,  we  have 

^  z-^-"^  dz  _log  (a2;»-^  +  6) 

~]az^-'  +  b~     -a{n-\)    '     ̂^  ̂^h 

2.  Making  the  same  substitution  and  integrating  by  (a)  we 
have 

fdx       _         X  r      dx  X 

{a'-x^)^^a\a^-x^)r     ]  {x^ ±a^)l~  "^ a\x^ ±a')h' 

3.  \—r-^ — .     Let  \/v^±a^  =  z.     Then  v^±a^  =  z'  and  2vdv 

2zdz. 

dv    dz    d{v  +  z)  {dv    .      ,        . 
.*.   — =  .         .       .-.         -=log(v+2), 

Z       V         v  +  z  ]  z  ̂   '' 

or  I -T=^=,  =  ̂og  (v  +  \V±a"^). 

Thus  formula  (r)  is  deduced  from  (gr). 
114 
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100.  Binomial  differentials.  Any  expression  of  the  form 

(ax'^  +  hx'^y  dx,  the  indices  being  positive  or  negative,  integers 
or  fractions,  may  be  called  a  binomial  differential.  For  con- 

venience in  making  the  following  statements  it  will  be  best 
to  suppose  the  binomial  differential  to  be  given  in  the  form 

x"^{ax^  +  by  dx. 

This  can  be  integrated  immediately  in  the  following  cases: 

(1)  When  r  is  a  positive  integer,  expand  by  the  Binomial 
Theorem. 

(2)  When   is  a  positive  integer,  let  ax^-\-b  =  z. 

(3)  When   1-  r  is  a  negative  integer,  let  ax^  +  b  =  x'^z. 

10 1.  When  the  differential  is  a  function  of  a  +  bx  let 

a  +  bx  =  z'^,  where  n  is  the  L.C.M.  of  the  denominators  of 
the  indices. 

(  dx  _  C2z  dz  2 

^^'  ]{l+x)l  +  {l+x)l~\'^rrz^     '*     l+x-z, 

ijl+z' 

2  tan-^^  =  2  tan-^vT-K^ 

102.  In   '- — .  let  ax^  +  b  =  x^z^. 
{Ax:^  +  B)Vax^  +  b 

103.  sin^O  dd,  |m  odd  and  +  ,  let  cos  d=-z, 
sm^'d  cos'^d  dd,     J  .'.  —sin  0  dd^dz. 

cos^/9  dd, 
sin^^  cos"»^  dd, 

m  odd  and  + ,  let  sin  d  =  z, 
.'.  cos  d  dd  =  dz. 

1  let  tan  ̂   =  ̂ , 

&m^ddd,  cos'^ddO,  m  even  and—,  [  .*.  cos  d=l/{l-\-z^)^, 
sm^dcos^Odd,  m  +  n  even  and—,  1         sin  d  =  z/{l-{-z^)i, 

J  dd=-dz/(l-hz^). 
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104.  More  generally,  any  rational  function  of  sin  0  or  cos  0 
becomes  algebraic  and  rational  when  tan  \0  =  z.     For 

co^0={\-z'^)/{l+z^),^m0  =  2z/{\+z'^),d0  =  2dz/i\+z^). 

105.  Any  rational  function  of  tan  0  becomes  algebraic  and 

rational  when  tan  0  =  z.     For  dd=dz/{l-\-z^). 
106.  Any  rational  function  of  d^  becomes  algebraic  and 

rational  when  e^  =  2.     For  dx  =  dz/z. 
107.  On  the  other  hand,  certain  algebraic  surds  are  ren- 

dered trigonometric  and  rational  by  substitution.     For 

\\  x  =  a  sin  0,  {a?—x^)^  =  a  cos  0; 

if  x=a  tan  0,  {x^-^a^)^  =  a  sec  6) 

\i  x=a  sec  0,  (x^—a^)i  =  a  tan  0; 

if  x=2a  sin^O,  {2ax—x^)^  =  2a  sin  0  cos  6; 

if  x=2a  tan2^,  {x^  +  2ax)i  =  2a  sec  0  tan  0; 

if  a; = 2a  sec^^,  {x^—2ax)i  =  2a  sec  0  tan  0. 

Hyperbolic  substitutions  may  also  be  employed.     For 

if  x  =  a  sinh  z,  {x^+a^)^  =  a  cosh  z; 

if  x  =  a  cosh  z,  {x^—a^)i  =  a  sinh  z; 

if  x  =  2a  sinh^^,  (x^-\-2ax)i  =  2a  sinh  z  cosh  z; 

if  a; = 2a  coshes;,  (x^— 2aa;)*  =  2a  sinh  z  cosh  z. 

108.  Since  ax^  +  bx  +  c=^  [(2ax  +  6)2  +  4ac-  62],  the  follow- 

ing general  results  may  be  obtained  from  previous  integra- 
tions by  the  substitution  2aa;  +  6  =  2. 

(1) 
J    a: 

dx 

ix^-\-bx+c    V4ac 

if  4ac— 62  is  +  ,  and 

^tan-i(^2l±L) 62  \V4ac-62/ 

=         1         j^^ ,  /2ft3:  +  6-\/62-4^c\ V62-4ac         \2ax  +  6  +  V6^-4ac/ 
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if  b^—4ac  is  +. 

C  fir  1    

(2)  =^^\os[2ax  +  b  +  2Va{ax^  +  bx  +  c)l 
J  V  ax^  +  bx-\-c     V  a 

r  dx  _    1      .   _y  2ax-b   \ 

J  V  -ax^~+bx  +  c    Va  \  ViacTP/  * 

J  (aa;2  +  6a;  +  c)»'     (4ac-  62)Vaa;2  +  6x  +  c" 

^1*      a:  (ia^       _  1  U2ax  +  b)dx—bdx 
jax^-\-bx-\-c     2a]      ax^-{-bx-\-c 

(5)  [-=^i^^-=ivS^T6^c-A[^^_. 

r        xc?x   2(Z)a;  +  2c) 

J(aa:2  +  6a:  +  c)?         (4ac-62)\/aa:2  +  6a;  +  c' 

lOQ.  If  we  put  x=—\n    — ,  =1, 

, ,     1.     f  dx 
or  a;4-A;  =  — HI       7===, 

these  integrals  will  be  reduced  to  §  108  (2). 

Examples. 

1.  f      /^         ̂ Jtan-^    fe-1.     Let  \/2^^^r^  =  0. Ja;V2ax-a2     «  Sj  a 

2.  f^^^  ̂ ^  =  (jx-l)  2\/^+2  tan-^V^.     Let  V^  =  2:. J     1+x 

3.  f   ^^-=  =  2tan-iVlT^. ]{2  +  xWl+x 
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dx 
   -     x  +  a  T   ̂       ,         1 7X   ; — rra=   ,  Let  X  +  a  =—. 

dx 

V{x-a){x-b) 
^  =  2  log  (Vx-a  +  Vx-b). 

G.   [-^=^=  =  2sin-^    i"^. 
}V{x-a){b-x)  Sjb-a 

7.   {x'il+x')^dx  =  ̂ \{7x'-2)a+x')l. 

}x*Vx'-l        Sx^ 

'  J(l+a:2)\/r^^         \/2   ̂^    \   2x2  • 

10.    |sin'^d^=  -i  cos'^-f  f  cos^^-cos  ^. 

Let  x—a  =  z^. 

J      COS* .3.  J 

  ]_    .    1 

siivO  cos^O 

do 

^cot3^-2cot  ^  +  tan^. 

sin  ̂          14- tan  *^* 

,,     ;8inO-8in^O  ̂ ^    ̂ ^  ^  4 15.    I     ,   .    ■  ̂     d<?  =  2^  +  cos^  + 

l+tan^^?' 

,     fsin  0  —  am^ 

*•  J     1-fsin^ 

17.   j  tan'^d^«-itan»^-tan  tf-f  ̂ . 
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iQ     f   dx^      _sec-'x      Vx'-l 
ix'Vx'-l         ̂   2x' 

C  dx  1    ,  X 
19.  —  =—p  log      

jxVax^  +  bx  +  c     vc         bx  +  2c  +  2Vc{ax^  +  bx  +  c) 

f  dx  1     .      ̂      bx  —  2c 
20.  —  =-^  sin-^ — . 

JxVax'  +  bx—c    Vc  a;V62  +  4ac 
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INTEGRATION  BY  PARTS. 

110.  Since vdu+udv=-=d(uv),  .'.   \vdu+\udv=uv, 

.*.    \udv  =  uv—  \vdUf 

or  u  dv  can  be  integrated  provided  that  v  du  can  be. 

Integration  by  this  formula  is  called  integration  by  parts. 

Ex.1,     log  a:  rfx  =  (log  x)x  -  he  c  — • 

=  i\ogx)x—\dx='x\ogx—x. 

=  =  X  sin-'x  +  v^l  —x^. 2.  I  sin-*x  dx  =  (sin-*a:)x  —   x  -^ 

3.  X  log x dx  =    log X  .  X dx  =  (log ^)~2~  \~o  — 

x^  ,  x' =  2- logx-^. 

f  X*"*"*  x*»^ 
4.  Similarly,       x»  log  x  dx  =»  — -r-  log  x  — ;   

J  n  +  1     °        (n  + 

x'*+* III.  It  is  often  necessary  to  repeat  the  integration  by 
parts  before  the  complete  integral  is  obtained. 120 
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cos  X  dx  =  x^  sin  X  —  2\  X  sin  X  dx. Ex.    {x"^  msxdx^Xx"^  .Q0sxdx-=x'^  mix-2\xs\ 

Again,     \xsmxdx=\x.smxdx^—x(iosx-\-\(iosxdx 

=  —X  cos  x  + sin  X. 

\
-
 

Substituting,     \x^  aosx  dx  =  x^  smx-\-2x  qosx  —  2  sin  x. 

112.  Sometimes  the  integration  reproduces  the  given  ex- 
pression with  a  new  coefficient. 

Ex.  1.  va a^—x' 

Va'-x'' 

=  a^  sin-^—  —  \x  d{  —  Va^  —  x^) 

x^  dx 

Va'-x^ 

=  a'  sm- 
'-  +xVa''-x^  -  Wa'  -x^  dx. a  J 

Transposing  the  last  term  to  the  left-hand  side  and  dividing 
by  2,  we  have 

r        n^  XX    /   
Va^—x"^  dx  =  -^  sin-^— +7rVa2 
J  2  a     2 

(1)^ 

2.  Similarly, 

[Va;2±a ̂
dx=  ±^log  {x  +  ̂x' ±a'')+^\^x' ±a\  (2)t 

I 

*  (1)  and   (2)  are  of  frequent  occurrence  and  should  be  carefully 
noted.     They  are  also  easily  obtained  by  the  substitutions  of  §  107. 

t  Or,  Tx/^M^'  dx  =^  sinh-l-+^V^H^^ J  2  a     2 

/s/x-'—a^dx  =— —  cosh-' — \-—\^x^—aK Z  OL      2 

(3) 
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3.   [sec  0  tsin^d  dO  =  tan  ̂   sec  /?  -    sec'^  dd, 

whence,  since  sec^^  =  1  +  tsm^O    and       sec  Odd  =  log  (sec  6  +  tan  6) 

I  sec  6  isin^d  dd  =  ̂   sec  ̂   tan  ̂ -^  log  (sec  ̂   +  tan  6). 

Examples. 

1 .  \x  cos  X  dx  =  xsinx  +  cos  x. 

2.  tan- ^xdx  =  x  tan- ^x  —  log  Vl  +xK 

3.  hr  tan-^a;(ia;  =  i  (14  a;^)  tan-'x-^a;. 

4.  x  sec-'x  dx  =  ̂   (a:^  sec-^a:  -  \^x^  - 1) . 

5.  \xe^dx  =  {x-l)e^. 

6.  \x^c^dx={x^-2x-h2)e^, 

7.  c^sin  a:  da:  =  ie^(sin  x  —  cos  x)» 

8.  x'sin  xrfx  =  2a;  sinx  +  (2— x)^  cosx. 

9.  X  snc'xdx  =  x  tanx  +  log  cosx. 

f  e^ 
10.  e^  sin  2x  dx  =  -T-  (sin  2x  —  2  cos  2x). 

11.  X  tan'x  <ix  «=  X  tan  X  +  log  cos  X  —  ̂x'. 
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12. 

13. 

14. 

15. 

16. 

17. 

x\\og  xydx  =  -^  [{log  xy-i  log  x+^]. 

sec^^  dO  =  ̂   sec  6  tan  /?  +  ̂  log  (sec  6  +  tan  6), 

e«^  cos  mx  dx  =   ,        2(a  cos  mx+m  sin  mx), Ci        I     III 

qCLX
 

e«^  sin  mx  dx  =  -v-; — Sa  sin  mx—m  cos  mx). 

\/2 ax 
x'rfx^-^— v2ax-x2  +  -2-sin-M    1 

\/2ax+x2da;  =  — x-\/2aa;+x'— ^log  (a;  +  a  +  V2ax+a;=^). 



CHAPTER  XXVII. 

SUCCESSIVE  REDUCTION. 

113.  To  integrate  sin^O  ddy  n  being  a  positive  integer. 

I  sin"^  dd=  Isin^-^O  sin  d  dO 

=  -  sin"-i^  cos  6+  (n-  1)  |  sin~-2^  cos2^  dd, 

and  writing  1— sin2^for  cos^^, 

=  -sin*^-i^  cos  6+{n- 1)  [sin«-2^  dd-  (n-  1)  | sin"^  dd. 

Transposing  the  last  term  and  dividing  by  n,  we  get 

f  .     -  ,-        sin'»~i^cos^  .  n— If  .  „  „_  ,. 
sm"^  dd=   +     sin*^-2^  dO.  (1) 

Writing  n— 2  for  n,  we  have 

f  •       00  7/1        sin'*~3^  cos  ̂   .  n— 3f  .       ̂ ^  ,/, sin«-2^  dO=   +   ^  sin'*-'*^  dO. 
J  n— 2  n— 2J 

Thus  by  each  integration  the  index  is  diminished  by  2, 

and  hence  will  in  the  end  depend  upon    sin  ̂ d^=—  cos^, 

or    (i0=^,  according  as  n  is  odd  or  even. 

124 
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By  a  similar  process 

j,osn0  ̂̂ ^cos^-^^^sin^^r^-lj^^^^.^^  ̂ ^  ^^^ 

_^     {  dd       fcos2^+sin2^,,     fcos2^,,  ,  f     dd 

"4-  Js"h^  =  J       sin«^       ̂ ^^^JslE^^^  +  Jsi; 

The  first  term=Jcos^d(-^^_^^^\^^_,^) 

cos^   i_r   d^ 

"^     (n— 1)  sin'^-i^    n-ljg 

sin^-2^* 

dd 

by  which  we  may  reduce  to         ** 

liS='°Stani<?,    or    j-g^=-cot^, 

according  as  n  is  odd  or  even. 

^.    .,    ,      f  d^  sin/9  ,  n-2C     dd 
^'"^'^^'^^^  J  c-^^(n-l)cosn-i^  +  ̂  ; 

C0S«-2^' 

115.    [tan^^  dd=  [tan«-2^  (sec2^- 1)^^ 

=  ftan«-2^  ̂ (tan  6)-  ftan^-2^  dO 

ftan^-i^      r =   tan^  2|^  fi0 
}    n-1       J 

and  I  tan  ddd  =  log  sec  0,     \dd  =  d. 



126  INFINITESIMAL  CALCULUS.  [Ch.  XXVIl. 

Similarly,   I  cot"^  dd=-  ̂ _^    -  I  cot«-2^  dd, 

and  [cot  ddd= log  sin  d,     Ud  =  6. 

1 16.   [cos"»^  sin»^^  dd  =  [cos'"-!  6  d  ̂.E^\ 

+^^^fcos"»-2^  sin^+2^  do 
n  +  lj 008*""^^  sin"+^^  .  m- 

n+1 

and  writing  sin'^+2^  j^  i\^q  form  sin^^  (1— cos^^), 

cos"»-i^sin«+i<?  ,  m-lf      ̂ _„_   .  ̂   _  ,^ 
+  ..    .J  COS"*    2^  QipnQ  ̂  n+1  n-\- 
m 

cos"*^  sin«^  dd, 

n- 

-If 

Transposing  the  last  term  and  dividing, 

fcos"»^  sin'^^  ̂ ^^CQS"^"'^  sm^+i^_^m-l  r  ̂^^_^^  ̂ .^^^  ̂ ^^ J  m+n  m+nj 

In  a  similar  way  we  might  have  obtained 

f      «,/!   •  „n  JA        cos^^+i^sin**"!^  ,  n— If      _^   .       „„  ,^ cos"»^  sm"^  <^^=   -\   cos»"^  sm"-2^  dO. 
J  m-\-n  m+nj 

117.  The  following  will  present  no  difficulty^ 

I'cos"*^  cos^~^^         m—  1  rcos"*~2^ 
J  sin«^  ̂ ~     (n-  I)  sin«-i^~  "^^^J  sin"-2^  ̂ ^' 
r  sin"^  sin^-^g  n- 1  f  sin^-2^ 

J  cos"*^      ~  (m-  I)  cos"»-i^    m—  ij  cos"»-2(9 

J  cos*"^  sin«^    J  cos"»^  sin^^ 

C  dd  I  {  ̂^ 

J  008*^-2^  sin"<?    J  cos"*^  sin'^-2^- 
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The  first  term  =    — zr^nd  (7   tt-^   ttS 

  1       m-  1  r  dd 
{n—  1)  cos"»-i<9  sin"-i(?     n—  1 J  cos"^(9  sin^-2^- 

Substituting  this,  we  get 

dO  1  m+n-2C  dd dO   1      m+n-2r 

cos^l?  sin^<9°"    (n-l)cos^"i<9sin"-i^'^    n-l    J 
cos'«(9sin«-2^- By  treating  the  second  term  in  the  same  way  we  might 

have  obtained 

r        dd    1   ^m+n-2r 
J  cos"^(9  sin^^<9     (w-l)cos^-i^sin«-i(9      m— 1  J 

c^^ 

cos^-2^  sin^^' 
Hence  the  integration  may  be  reduced  to  one  of  the  fol- 

lowing : 

[^P  {  dd  {     dd  {     dd        ,^,        WTTX 
\d^j          p   •     a^     \-^-a^     or         3  (Ch.  XXII). 
J  J  cos  ̂   sm  d      J  sm  d  J  cos  ̂   ^ 

119.  The  following  may  be  obtained  from  the  preceding  re- 
ductions by  the  substitutions  of  §  107;  they  may  also  be 

obtained  directly  (cf.  §  112). 

r    x^'dx    _     x''-^Va^—x^a^(n—l)Cx''-^dx 

]Va?-x^~  n  n       jVa^-x^' 

C        dx        _        V'a^—x^  n—2     f  dx 
J  x^'Va^-x^ ~     o?{n-  l)a;"-i     a?{n-  1)J  x^'-Wa^-x^' 

I*     x'^dx   x''~W2ax—x^a{2n—l)^   x'^~'^  dx 

iV2ax-x^~  ^  '^       JV2ax-x^' 

f     x'^dx      _rc^-iVic2  +  2arc     a(2n— l)!*    x'^'^dx 

SVx^  +  2ax~  ^  ^       }Vx^  +  2ax 

f/  2      2xf  ̂      a:(a2-a:2)2       a2n  f  oxf-i  . 
J  (a2-  :r2)  2  do:  =       ̂ _^^V  +  ̂ ^  J  (a^-  x^)  2      c?a;. 
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Examples. 

1.  Obtain    the   results  of    §114  by   integrating   sec^ d  dO    and 
cosec"^  dd, 

C  x^  cos  Tix    mx"*~*  sin  nz 
2.  x"»  sin  Tia:  ox  =   1   ^^i   

w(m-l)r   ; —    x^~^  sin  nx  dx. 

n^      J 

■                   -      x"^  sin  ru;    wx^-^  cos  nx 
3.     a;"*  cos  na;aa;=   \- 

n' 

m-l)[ 
n'      J 

xTn-2  cos  na;  da;. 

4.   f x^e°^  dx 
e«==  da; 

a         aj 

Ce"^  dx  e"^  a    f 

^'  J~x^  ~~(7i-l)x»»-^"^ri-lJ 

6.  Jxm(loga:)ndx=^^!!^^J^ Tjn-i  
• 



CHAPTER  XXVIII. 

CERTAIN  DEFINITE  INTEGRALS.* 

120.  The  first  term  of  §  113  (1)  is  0  when  ̂ ==0  and  also 

when  d=\7z',   hence 

[^  •  «/)^/)     (n-l)(n-3)... sin«i9  dd = ^ — r    \^     —  .  a, 
Jo  n(n— 2)...  ' 

each  set  of  factors  being  carried  to  2  or  1,  and  a  being  ̂  

when  n  is  even,  and  1  when  n  is  odd. 

Also,  ^  cos"^  ci^  =  I  ^  sin«^  dd. 
121.  By  examining  the  results  of  §  116  it  will  be  found 

that 

flin'-gcosngrfg^f^"-!)^"'-^)  •  ■  -"("-J.X^-^)  •  •  -I.e., Jo  {m-\-n){m-\-n—2) .  .  .  ' 

each  set  of  factors  being  carried  to  2  or  1,.  a  being  —  when 

m  and  n  are  both  even,  and  1  in  all  other  cases. 

This  reduces  to    if  n=l,  and  to    ;  if  m=l. m+1  n+1 

122.  Many  integrals  may  be  reduced  to  the  foregoing. 
n 

Ca    2C''*'  dx  C~2 
Ex.1.  =an\    sin^ddd.     Let  a:  =  a  sin  ̂   (§  107). 

]oVa'-x'        Jo 

*  For  a  collection  of  indefinite  and  definite  integrals  see  Peirce's 
Short  Table  of  Integrals  (Ginn  &  Co.). 

129 
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fa         ?  r^ 
2.       {a'-x^)dx  =  ar^+'\    cos^+'ddd. Jo  Jo 

fa  ?  r? 

Jo  Jo 

r2«     x^dx  r^ 
4.  ^:i_Zl—  =  2(2o)"     sin'^^d^. 

Jo  v2ax-a;2  Jo 

r2a  »  f' 
5.  a:"»(2aa;-a:2)  da;  =  2(2a)w»+«+M    sin^'^+^+^dcoS'^+^edd. Jo  Jo 

a   r    dx         1  n 6.          -  =   r     cos^-^Odd. 

Jo,   2^    2^^     ''Jo 

a  TT 

7.  a:^(a-x)«dx  =  2a^+"+M     sin2"»+^^  cos^^+^^rf^. Jo  Jo 

123.  From  §  93  it  is  plain  that 

f{x)  dx=—\    j{x)  dx; 

that  is,  interchanging  the  Umits  merely  changes  the  sign 
of  the  definite  integral. 

124.  It  is  possible  in  certain  cases  to  arrive  at  the  value 
of  a  definite  integral  when  the  indefinite  integral  is  unknown. 
The  following  important  integral  is  an  illustration. Vn 

r  vtt 
To  prove       e~^'da:=-^ Jo  ^ 

From  §  120  we  have 

'sin«^  dO  .  I  'sin'^+i^  dd=~  ̂ . 0  n  +  1  2 
(1) 
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Letsin^<9  =  6-^',  or  <9=sin-i  \e~^)  . 

2x     n  , 
  e     dx         _  , 

,«         n  2x      ax 
,*.  ao= 

\jl—e   "  \je  ̂  —1 

which,  by  the  Exponential  Theorem, 

=  -v  -•  77, where Z)  =  >.H—+^-^+  .. 

Substituting  in  (1)  we  have 

(•0     h    e-^'  dx     fo      2    e   ""^  n  > dx_      1       TT 

""^Tfi? 

or 

"^e-'^'dx     re   ̂   "  ̂c^o:       n    tt 
re^f_dx     re   ̂   n 

Jo      D      -Jo  ̂   ^  +  14' 

Now-  let  n=  00  ;  then  D  =  1,  and  -—  (=  1  +-)  also  ̂   1, lb  \  it  I 

Examples. 

1.   [''sin"^d^  =  2|'2  sin«(9(i^,     n>0. 

2    f''cos«(?d^  =  0,  nodd,    and     =2|2cos«<9d^,  n  even Jo  Jo 

3.   [''x  sin  X  cos  na:  c?a:  =  ( - 1)'^+';;^;     «  an  integer  not  1, 
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and  =-7-    ifn=l 

4.  \  X  coax  Bin  nxdx={  —  l)^— ̂ ^^,    n  an  integer  not  1, 
Jo  ^      ̂ 

and  --|    ifn  =  l. 

5.  The  Gamma  Function.     The  integral       x^-^e-^dx  (n  positive Jo 

is  called  the  gamma  function  and  is  represented  by  r{n).    Inte- 

grate by  parts  *  and  show  that 

r(n)=ir(n  +  l),    or     r{n  +  l)  =  nr{n). n 

6    Show  that  r(l)  =  1,  and  deduce  r(2)  =  1    r(3)  =  1.2,  r(4)  = 
1.2.3,...  r(n)==  (n-1)!  if  n  is  an  integer. 

7.  Show  that  r(^)  =  v^.    Let  x  =  z'^  in  the  integral.    Deduce 
/-(^4.^)  =  1  .  3  .  5  .  . .  (2n-l)v^/2»,  n  an  integer. 

8.  x^-^e-^^  dx  =  — —,  n  and  a>  0 

Jo  ^ 

^2iu-ie-a:2  dx  =  ir(n),  n>  0.    Let  x^  =  z 
0 

10.  (log-)       dx=r(n),  n>0.     Leta:  =  6-«. 

f  1  /       1  \  »-*         r(n) 
11.  a:"»-'(log-j       da;=-^,m  and  n>0, 

*  ;^jp_ooX"e-*  =  0  for  all  values  of  n. 

For,    a^c-*=/-^V  =  /   ^   YiOifn>0. 

The  conclusion  is  obvious  directly  if  n<0. I 
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Many  other  integrals  may  be  expressed  by  means  of  gamma 
functions.    The  following,  known  as   the   Beta  Function,  is  an 

important  illustration  (see  Williamson's  Integral  Calculus,  §  121). 
ri  r(m)  r(n) 
xm-\i-x)n-'^dx=    '      ■  \  ,    mandn>0. 
Jo  •*  v^  •" ^/ 

Assuming  this  result  deduce : 

12.   1  x"— (a-x)»-'(fe=o'"+'— ^^^^-T^. 

,,    f    x"-'(fa       r{m)  r{n)     ..14-.     1 

n     dx      _V^        Vn/ 

15.   p Jo ̂  sin"*^  cos"^  do  =   x   ,    m  and  n  >  —  1. /w  +  n  +  2\ 

\       2       / 

Letgin^^=2. 

16.   I  ^  sin"^  d^  =  J  ^  cos"^  d^=  -^   

Values  of  r{n)  for  values  of  n  between  1  and  2  are  given  at 
the  end  of  this  book.  Other  values  are  unnecessary  on  account 

of  the  relation  r{n  +  l)  =  n  r{n). 



CHAPTER  XXIX. 

AREAS  AND  LENGTHS  OF  PLANE  CURVES. 

SURFACES  AND  VOLUMES  OF  SOLIDS  OF  REVOLFHON. 

125.  Let  P  be  a  point  on  a  continuous  curve  CD  whose 

equation  is  given.     Let   OA  =  a,   OB  =  h,   OM  =  x,   MP=y, 
MN=dx,  RQ  =  Jy,  RT  =  dy. 

^        We  have  seen  (§§  94,  95)  that 

(1)  The  area  ABDC=  [  y  dx* J  a 

(2)  The  volume  formed  by  the 
revolution    of    this    area    about 

OX M     N  B    X 
=  ;r    y^  dx. 

J  a 
PiQ  56  Let  the   length   of   the   curve 

measured  from  some  point  up 

to  P  be  s;  then  PQ  =  Js,  PT=^ds.  Also  (§§  92,  93)  £IJs  = 
£Ids.     Hence 

(3)  The  length  CD=  T     ds,  where  ds=Vd^Tdy^. 

As  and  ds  being  equivalent  infinitesimals  we  assume  that 
they  form  equivalent  areas  in  revolving  about  the  a:-axis. 

♦  The  area  «=  sin  w  /   y  dx  if  the  angle  between  the axes  IS  0). 

134 
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But  ds  describes  the  lateral  surface  of  the   frustum  of  a 
cone  whose  area 

=  27r (?/  +  \dy)ds  =-2ny  ds-\-l, 

where  /  is  a  higher  infinitesimal.     Hence 

(4)  The  area  of  the  surface  formed  when  CD  revolves 

I  -J/   rl o  ' 

J  x  =  a 

•x  =  b 

.about  OX  is  27r|       y 

s   Q^ 

M    N Fig.  67. 

Since    higher    infinitesimals 
are  to  be  omitted  in  finding 
the  element  of  an  integral  we     h 

may  use  dy  for  Jy  and  accord-     ̂  
ingly    regard    dx    and    dy    as 
simultaneous  infinitesimal   in-    
crements   of  x   and   y  in  the 
same  figure.     Thus  (Fig.  67) 

roF 
(5)  The  area  ECDF=        xdy,  and  the  volume  formed  by 

JOE 

rOF 

revolving  this  area  about  OY=n\     x^  dy. 
Joe 

If  CABD  revolves  about  OY,  the  volume  formed  by  MQ  = 

ydx.2nx-\-L    Hence 

(6)  The    volume    formed    by    revolving    CABD     about 

OY 
Cb =  271    xy  dx. 

(7)  Similarly   the   volume   formed   by   revolving   CABD 
about  BD 

=  \  y  dx  .27:(b—x)  =  27:\   {b—x)ydx. 
J  a  J  a 

Other  relations  may  be  written  down  in  a  similar  way. 
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Ex.  L  To  find  the  length  of  the  semi-cubical  parabola  ay'  =  x^ 
(Fig.  68)  from  the  origin  to  the  point  (a,  a). 

3 
From  the  equation  we  have  dy= — 7=:  x^  dx, 2\^ 

/.  ds  =  Vdx^  +  ay^  =   '^=— ax. 2Va 

,.  o^,rv^4a+to^^|-(4a+to)iY "o   B — X  Jo     2\/a  L    27 v^  Jo 
Fig.  68.  13\/l3-8 

=  — 27— ^• 
2.  Thearea05D  =  |a'. 

3.  The  volume  of  OBD  about  OX^^naK 

4.  Find  the  surface  of  revolution  of  the  cubical  parabola  a^y  =  x^ 

about  OX,  X  varjdng  from  0  to  a.  Ans.  -^{10^10-1)0*, 

126.  It  is  sometimes  desirable  to  express  both  x  and  y  in 
terms  of  a  third  variable. 

Ex.  The  equation  a:H-?/*  =  a*  (Fig.  18)  is  satisfied  if  we  put 
a;  =  a  sin'/?,  y  =  a  cos^O, 

Then  dx  =  Za  sin^d  cos  d  dd,   : .   \  ydx  =  Za^       cos*^  sin'^  dd, Jo  Jo 

which,  §  121,  »  Ba^  g-^-2 1  =  32^a'. 

/.  the  whole  area  bounded  by  the  curve  =  f;ro'. 

For  the  length,  ds  =  Vdx^  +  dy^  •=  3a  sin  6  cos  d  dd, 

,\  whole  length  =  12a     sin  ̂   cos  ̂   d^  =  6a. Jo 

Similarly  it  may  be  shown  that  the  volume  of  the  solid  made 

by  revolving  the  whole  area  about  one  of  the  axes  =  1^0^ ;ra',  and 
that  the  surface  of  this  solid  =  Y«:a^ 
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127.  It  will  often  be  necessary  to  determine  the  limits 
of  the  integration  from  the  equation 
of  the  curve.     Thus  in  finding  the 
whole  area  enclosed  by  the  curve 

it  will  be  seen  that  the  curve  cuts 

the  a:-axis  at  {±a,  0)  and  that  the 
general  shape  is  that  of  Fig.  69. 
Hence  the  complete  area 

Fig.  69. 

=  4    2/  dx=ia^, Jo 

The  volume  of  the  solid  of  revolution  about  the  a:-axis 

=  x\7ra3,  an(^  about  the  2/-axis  =  jTr^a^. 
128.  When  y  is  negative  the  sign  of  ydx  is  — ,  and  accord- 

ingly an  area  lying  below  the  axis  of  x  will  be  affected  by 
the  same  sign.  Hence  in  calculating 
an  area,  care  must  be  taken  that  y 
does  not  change  sign  between  the 
given  limits.     Thus  in  the  curve 

y=^x{x-\){x-2),Yig.7Q, 

?/  is   +   from  x  =  0  to  x=l,  —   from 
x=  1  to  a:  =  2;  it  will  be  found  that 

ydx  =  \,        ydx=  —  \,        ydx  =  0. 

And  generally  the  sum-limit  given  by  a  definite  integral 

1: j(x)dx  is   that   of  the   algebraical  sum  of  the  elements, 
which  will  be  equal  to  that  of  the  arithmetical  sum  only 
when  f(x)  is  of  the  same  sign  for  all  values  of  x  between  a 
and  b. 

129.  If  y  is  infinite  in  a  given  interval  of  x,  the  area  will 

have  a  limit  (and  will  therefore  remain  finite)  if  the  indefi- 
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nite  integral  ydx  remains  finite  for  the  interval  of  x  in 

For   example,    if   y^{x— 1)^=1,   Fig.    7 
1,  and 

j)dx=3[(.-l)*];=3,    jU,    £=6. 

question.     For   example,    if    y^{x—lf=l,    Fig.    71,    y=oo 
when  x=l,  and 

Fig.  72. Fig.  73. 

Thus  if  the  area  is  imagined  as  described  by  an  ordinate 

which  starts  from  the  y-Sixis  and  moves  towards  the  asymp- 
tote x=l,  the  area  =  3,  and  this  is  what  is  meant  by  the 

area  between  the  curve,  the  axes,  and  the  asymptote.  Simi- 
larly if  the  ordinate  starts  from  the  line  x=2  and  moves 

towards  the  asymptote  x=l  the    area  .^3,  and  the  sum 

of  the  area-limits  =  6=\ydxsi,sify  were  continuous  for 
Jo 

the  interval  [0,  2]  of  x. 

Similarly  if  y^{x-l)  =  l,  Fig.  72, 

j^?/c^x  =  f[(x-l)§]^  =  -f,      f=f,      [=0, 
the  algebraical  sum  of  the  area-limits. 

But  if  y(x— 1)^  =  1,  Fig.  73,  the  indefinite  integral  ydx— 

1-x =  Go   when   x-l,    and    the    area=oo.     In    this    case 
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ydx=  —  2,  which  represents  no  part  of  the  area  for  the Jo 
interval    [0,   2]   of   x.      On   the   other   hand,    the  area  for 

[2,  oo]=L 

130.  As  X  increases  the  volume-element  Tiy^dx  changes 

sign  only  with  y^,  i.e.,  when  y  becomes  imaginary.     Thus  in 
Fig.  70, 

Examples. 

1.  The  circle  x^  +  y^  =  a^.    Show  that 
(1)  Area  =  7ra^. 
(2)  Length  =  27ra. 
(3)  Volume  of  sphere  =  |7:a'. 
(4)  Surface  of  sphere  =  47^a^ 

2.  The  witch  y\a-x)  =  a^x,  Fig.  54. 
Let  x  =  a  sin^<9,  then  y=a  tan  6. 

(1)  Area  between  curve  and  asymptote  =  ;ra^ 

(2)  Volume  of  this  about  asymptote  =  i^^a^ 
(3)  Volume  of  same  area  about  OY  =  §7:^a^. 

3.  The  cissoid  y'^{a—x)  =  x^,  Fig.  41. 
Let  x  =  a  sin^^,  then  y  =  a  sin^<9  tan  6. 

(1)  Area  between  the  curve  and  asymptote  =  f;ra^ 

(2)  Volume  of  this  about  asymptote  =  i;r^a^ 
(3)  Volume  of  same  area  about  0F=|7r^a^ 

4.  Find  the  area  bounded  by  the  rectangular  hyperbola  xy  =  l, 
and  the  lines  y  =  0,  x  =  l,  x  =  n.  Ans.  log  n. 

5.  The  curve  y^{a^  —  x^)  =  a*,  or  a;  =  asin  d,  y  =  asec  6. 
(1)  Area  between  curve,  y-axis,  and  asymptote  x  =  a  is  Tca^. 
(2)  Volume  of  this  about  ̂ /-axis  =  47ra^. 
(3)  Volume  of  same  area  about  asymptote  =  2;raH;r— 2). 

6.  The  curve  y  =  e-^. 
(1)  Area  from  x  =  0  to  x  =  oo  is  1. 
(2)  Volume  of  this  about  a:-axis  =  ̂tt. 

(3)  Convex  surface  of  this  solid  =  7r[V2+ log  (1  +  V2)]. 



Ans 

^v. 

ha\ 

TZ. 

i. 

I^.. 

Ans. 

^%z. 

A. 

140  INFINITESIMAL  CALCULUS.  [Ch.  XXIX. 

7.  The  curve  x^y^  +  a^y"^  =  a^x^. 
The  area  between  the  curve  and  each  asymptote  =  2a'. 

8.  Find  the  area  between  the  following  curves  and  the  x-axis: 

(1)  {y-xy=x\  Fig.  30. 
(2)  {y-x^y  =  x\Y\g.Z\, 

(3)  a}y  =  x{x''-a'),Y\g.  17. 
(4)  2/(l+a:^)  =  l. 

(5)  y^xiX-x''), 
(6)  y  =  x\x-\). 

9.  Find  the  area  of  a  loop  of  the  curves: 

(1)  2/'  =  x'(2x  +  l),  Fig.  34. 
(2)  ?/2  =  x2(2x  +  l),  Fig.  32. 
(3)  ai/2=(x-a)(x-2a)^  xW- 

10.  The  parabola  (-^    +  (-|)    =1.     See  Ex.  11,  p.  91. 

(1)  Area  between  curve  and  axes  =  ̂a6. 

(2)  Volume  of  this  about  OX  =jz7:ab^. 

11.  The  cycloid  x  =  a(^-sin  6),  y  =  a{l-cos  6),  Fig.  19.     For  a 
single  arch: 

(1)  Area  =  3;ra2. 
(2)  Length  =  8a. 
(3)  Volume  about  base  =  5;r'a'. 
(4)  Surface  of  this  solid  =  -V-7ra^ 

(5)  Volume  of  the  area  3;ra^  about  tangent  at  vertex  =  7?: 'a'. 
(6)  Show  that  in  Fig.  20,  s^  =  8ax  {s  =  OP,  x  =  OM). 

12.  The  curve  x  =  a(l-cos  0),.y  =  aO;  Fig.  20. 

(1)  Area  =  27ra2. 
(2)  Volume  of  this  about  OX  =  7:{7:^-4)a\ 
(3)  Volume  about  Or  =  5;rV. 

13.  The  ellipse  —  +  r^  =  1,  or  a;  =  a  sin  ̂ ,  ?/  =  &  cos  ̂ .     Show  that 

(1)  Area  =  7ra6. 

(2)  Volume  of  prolate  spheroid  *  =  |7ra?)'. 

♦  The  solid  formed  by  the  revolution  of  an  ellipse  about  its  major axis. 
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(3)  Surface  of  prolate  spheroid  =  2;r6^  +   sin~^e. 

(4)  Volume  of  oblate  spheroid  *  =  |7:a^6. 
7:b^         /l+e\ 

(5)  Surface  of  oblate  spheroid  =  27ra^  +  —  log  (-   ) . 

Note. — The  eccentricity  e  =  V,a^  —  b^/a. 

14.  The  hyperbola  ~2 ""  r2 ""  ̂'  or  x  =  a  sec  /9,  y  =  h  tan  6. 

Show  that  the  area  bounded   by  the   curve,  the   a;-axis,  and 
the  ordinate  at  the  point  {x„  y^)  is 

^x,y,-^ab  log  (|'+y , 
and  hence  that  the  second  term  in  this  result  is  the  area  of  the 

hyperbolic  sector  OAP,  where  0  is  the  centre,  A  the  vertex,  and 
P  the  point  on  the  curve. 

15.  The  parabola  y^  =  4tax,  Fig.  74. 
If  OA  =Xi,  AB  =  yi,  show  that 

(1)  AresiOAB  =  ̂x^y^. 

(2)  Length  0B  =  ̂   V4a'  +  y,' 

2a 

(3)  Volume  of  OAB  ahoxit  OX  =  ̂ny.'Xr. 

(4)  Surface  of  this  solid  =  ;^[(4a2  +  2/i=')i-8a3] Sa 

Fig.  74. 

3a 
[normaP  -  subnormal^]. 

(5)  Volume  of  OAB  about  AB^jS7iXi%. 

(6)  Volume  of  OBC  about  OF^IttXi^?/,. 
(7)  Volume  of  OBC  about  BC  =  ̂7:y,'x,. 

*  The  solid  formed  by  the  revolution  of  an  ellipse  about  its  minor 
axis. 



CHAPTER  XXX. 

SIMPSON'S  RULE.  VOLUMES  FROM  PARALLEL  SECTIONS. 
THE  PRISMOIDAL  FORMULA.  LENGTH  OF  A  CURVE 
IN  SPACE. 

131.  Simpson's  rule.     An  area  (Fig.  75)  is  bounded    by 
a  line  which  is  taken  as  the  a:-axis,  a  curve,  and  two  ordi- 

o  X 
Fig.  75 

nates  of  length  2/1,  2/3 >  ̂ ^  a  distance  h  apart,  and  2/2  is  the 
ordinate  midway  between  them. 

The  area 

^  =  i/i(?/i +42/2  +  2/3),  (1) 
provided  that  the  equation  of  the  curve  is  of  the  form 

y  =  a-\-hx-\-cx^+d7^,  (2) 
where  a,  h,  c,  and  d  are  constants.     (1)  is  the  statement 

of  Simpson's  Rule. 
For  convenience  take  the  origin  at  0,  the  foot  of  the  middle 

ordinate.    Then  the  area 

A=\       ydx=\       (a  +  hx  +  cx^+da:^)dx J  -H  J  -i,h 

=  ah+^-^h^  =  ih(6a-^ich^), 

Vi,  3/2,  2/3  ̂ re  the  values  of  y  in  (2)  when  x 

.*.  2/i+2/3  =  2a  +  ic/i2,  and  y^^a-    Hence  (1). 

ih,  0,  ih; 

142 
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The  origin  may  be  any  point  in  OX,  for  the  equation 
would  remain  of  the  form  (1)  if  the  origin  were  transferred 
to  0. 

132.  When  the  equation  is  not  of  the  form  (2),  or  is 
altogether  unknown,  the  area  may  be  divided  into  four, 
six,  or  an  even  number  n  of  parts  by  equidistant  ordinates, 
and  (1)  applied  to  each  part;  the  result  will  be  a  more 
or  less  close  approximation  to  the  correct  area.  This  de- 

pends upon  the  fact  that  y  can,  in  general,  be  expressed 
as  a  series  of  powers  of  x,  and  that  higher  powers  than  the 

third  may,  for  purposes  of  approximation,  be  neglected  if  x 
is  small.     Formula  (1)  now  becomes 

^[2/1+4(2/2  +  2/4  +  .  .  0+2(2/3+2/5  +  .  .  .  )+2/n+lL 

h  being  the  whole  base,  n  the  number  of  parts,  yi  and  ̂ /n+i 

the  extreme  ordinates,  y2,  y^,  •  -  -  the  even-numbered  ordi- 
nates,  2/3?  2/5;  •  •  •  the  remaining  ordinates. 

Ex.  If  in  Fig.  75  the  base  h  were  divided  into  three  equal  parts, 
show  that  the  area 

==i/i(2/i+ 37/, +  81/3  +  2/4)*, 

where  2/1  and  y^  are  the  extreme  ordinates,  2/2  and  yz  the  inter- 
mediate ones. 

Fig.  76. 

133.  Volumes  from  parallel  sections.     Let  a  solid  be  cut 

by  parallel  planes  at  perpendicular  distances  a,  x,  x-\-dx,  b 

*  Another  of  Simpson's  Formulae. 
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from  a  fixed  point,  and  let  A  be  the  area  of  the  section  at 

distance  x.  Then  if  A  can  be  expressed  as  a  function  of  x, 

the  volume  of  the  solid  between  the  extreme  planes  is 

Adx. 

For  the  volume  of  the  slice  of  thickness  dx  is  (A -hi)  dx, 

where  i  is  infinitesimal,  .'.  the  element  of  the  integral  is 
Adx. 

Ex.  1.  To  find  the  volume  of  the  ellipsoid  —^+^^+—  =  1.    The 
a^     0^     c^ 

equation  may  be  written 

which,  X  being  regarded  as  con- 
stant, is  the  equation  of  a 

section  at  a  distance  x  from 

the  origin.  The  area  of  any 

ellipse  y^/a^-\-z^/^^=l  is  nap. 
Hence  the  area  of  the  section 

of  which  DEF  is  a  quadrant  is 

Fig.  77. 

(-3-  - 

HI('-5) 

nhc 

volume  is 

dx  =  \nabc. 

the    whole 

2.  Find  the  volume  of  the  elliptic  paraboloid  t/V?>'+2Vc'  =  2a; 
from  x  =  0  to  a;  =  a.  Ans.  Tza^hc. 

3.  Find  the  volume  enclosed  by  the  plane  x  =  h  and  the  surface 

(1)  i/Va;'  +  2Va'  =  l,     (2)  xy^-\-az''  =  ax\ Ans.  (1)  \Tzah\    (2)  ̂ nam. 

4.  Find  the  volume  of  the  tetrahedron  formed  by  the  cooidi- 

nate  planes  and  the  plane     ̂ t"^ —  ̂ ^ 
Ana,  \ahc. 
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5.  Two  cylinders  of  altitude  h  have  one  extremity,  viz.,  a  circle 
of  radius  a,  in  common;  the  opposite  extremities  touch  each 
other.     To  find  the  common  volume. 

A  section  of  the  common  volume  parallel  to  the  plane  CDEF 
(which  contains  the  centres  of  the  circles)  and  at  a  distance  OA=x 
from  that  plane  is  a  triangle  GBH  similar  to  EQF.  The  area  of 
EQF  is  ah. 

GBH    AH'    a'-x'  h 

ah       OF'         a'  a 

«Jo  ^ 

k  ̂ I 

Fig.  78. 

6.  A  square  moves  with  the  middle  points  of  its  sides  on  the 
circumferences  of  two  equal  circles  at  right  angles  to  each  other. 
To  show  that  the  volume  and  surface  of  the  groin  thus  formed 
are  each  4/7r  times  those  of  the  inscribed  sphere. 

Let  BCDE  (Fig.  79)  be  one  position  of  the  square,  OA  =x,AP  =  y. 

The  volume  and  surface  elements  of  the  sphere  are  Tty'dx,  27iyds', 
those  of  the  given  solid  are  {2yydx,  4:{2y)ds;  hence  the  proposi- 

tion.   The  volume  and  surface  are  therefore  ~ia^,  16a'. 
The  solid  is  evidently  the  common  part  of  two  equal  right 

circular  cylinders  whose  axes  intersect  at  right  angles. 
7.  A  right  circular  cylinder  is  sharpened  to  an  edge  coinciding 

with  a  diameter,  the  equal  plane  faces  forming  a  wedge.  Find 
the  volume  cut  off. 
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Let  a  length  h  be  cut  from  opposite  sides  of  the  cylinder  of 
radiiis  a.  Sections  may  be  made  by  planes  parallel  to  the  axis 
and  the  diameter,  or  parallel  to  the  axis  and  perpendicular  to  the 

diameter.  Ans.  ̂ a'^h. 
Show  that  for  any  diameter  of  a  right  elliptic  cylinder  the 

result  is  ̂ abh. 
8.  A  parallelogram  moves  with  its  angular  points  on  two  ellipses 

which  have  a  common  axis.  The  semi-axes  are  a,  h,  c,  and  the 
angle  between  the  curves  is  (o     Show  that  the  volume  is  ̂ abc  sin  co. 

9.  Show  that  the  volume  of  any  cone  or  pyramid  =  ̂   base  X 
height,  assuming  that  the  area  of  a  section  parallel  to  the  base 
varies  as  the  square  of  its  distance  from  the  vertex. 

10.  A  straight  line  is  parallel  to  a  plane  which  contains  a  closed 
curve.  Another  straight  line  moves  so  as  to  intersect  the  curve 
and  the  fixed  straight  line  and  remain  perpendicular  to  the 
latter.  Show  that  the  volume  of  the  right  conoid  thus  formed  = 
i  base  X  height. 

Fig.  80.  Fig.  81. 

11.  Form  of  an  inverted  column  of  uniform  strength.  Lei  A  be 
area  of  a  horizontal  section  at  a  distance  x  above  the  base,  which 
is  also  assumed  to  be  horizontal  and  of  area  a.  The  prescribed 
condition  is  that  A  varies  as  the  volume  V  below  A ;  hence  dA 
varies  asdV. 

.' .  dA=JcA  dx,    or    dA/A=k  dx. 

Integrating,  log  A=kx  +  c.    But  A=a  when  x  =  0,  :.  log  a  =  c. 

.'.  \og{A/a)'=kx,     or    ̂ =a^^ 

12.  Such  a  column  is  to  be  cast  in  the  form  of  a  solid  of  revo 



134.]  THE    PRISMOIDAL   FORMULA.  147 

lution,  R  and  r  being  the  radii  of  the  extremities,  and  h  the  height. 

How  much  metal  is  required?  Ans.  VoI.  =   ^ 

-(7) 

134.  The  prismoidal  formula.  The  extremities  of  a 

solid  are  parallel  planes  of  area  Ai,  ̂ 3,  at  a  distance  h  apart, 
and  A 2  is  the  area  of  a  parallel  section  midway  between 
them.    The  volume 

v=i/i(Ai +4^2+^3),  (1) 

provided  that  the  area  A  of  any  section  parallel  to  the  ex- 
tremities can  be  expressed  in  the  form 

a-\-hx+cx^+dx^,  (2) 

where  x  is  the  distance  of  the  section  from  a  fixed  point. 

(1)  is  the  Prismoidal  Formula.     Since  the  volume  =  \A  dx, 

the  proof  is  the  same  as  for  Simpson's  Rule.  The  Pris- 
moidal Formula  will  give  exact  values  of  the  volume  of 

many  of  the  common  solids,  such  as  cones,  pyramids,  prisms, 

spheres,  ellipsoids,  paraboloids,  etc.  It  will  apply  to  Exs.  1-9 
of  §  133.  (In  Ex.  7  it  will  apply  to  the  second  mentioned 
sections,  but  not  to  the  first.) 

Ex.  1.  The  area  of  a  section  of  a  sphere  at  a  distance  x  from  the 

centre  is  7z{a^—x^),  which  is  of  the  form  (2),  hence  the  Prismoidal 
Formula  will  apply.  For  the  whole  volume  h  =  2a,  Ai=A3  =  0, 
A^  =  Tza\     :.  Y  =  %nah 

2.  Find  the  volume  of  the  greatest  solid  that  can  be  cut  from 
a  sphere  of  radius  a,  the  parallel  sections  to  be  regular  polygons 

of  n  sides.  Ans.  \na^  sin  27r/n. 
The  volume  of  a  sphere  may  be  deduced.     For 

•     ,   .    «  .       sin  27: /n    ̂      ,     , 
\nd?  sm  2;r/n  =  frra^  — — —  =  %na?  when  n = 00 . 
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135.  Length  of  a  curve  in  space. 

Ex.  1.  To  find  the  length  of  the  curve  of  intersection  of  az^z^ 
and  Za^y  =  2x^  from  the  origin  to  the  point  (Xi,  y^,  Zi), 

(2
x\
  ̂ 

1+—
 
7]  dx\ 

=i:(-i) 
2  x^' 

2.  Find  the  length  of  the  helix  x  =  a  sin  nz,  y  =  a  cos  ,ik,,  from 

the  origin  to  the  point  (x„  y^,  z^).  Ans.  z^Vl  +  n^a^. 
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POLAR  COORDINATES. 

136.  Let  0  be  the  pole  or  polar  origin,  OA  the  polar  axis 

or  initial  line,  {0,  r),  {d-\-Jd,  r+Jr)  the  coordinates  of  P 
and  Q,  ([f  the  angle  which  the  tangent  at  P  makes  with  the 
radius  vector  OP.  Take  PR  perpendicular  to  OQ.  Then  (p 
is  the  limit  of  OQP  as  Q  approaches  coincidence  with  P, 

SLndtsinOQP=PR/RQ. 

Fig.  82. 

But    PR  =  rsmJd  =  rJd  +  Ii,     (§16),     and 
RQ  =  r-\-Jr—r  cos  Jd  =  Jr-\-r{l  — cos  Jd)  =  Jr  +  l2. 

^        .      .PR      sAd  ,„  ,^,        dd 

Similarly         sin  ̂   =  r-i-,     cos  ̂   =  -r' 
149 
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Squaring  and  adding,     1  =  (r^dd^-^dr^)/ds^, 

or  ds^  =  r^dd^+dr^. 

137.  Through  the  origin  0  (Fig.  83)  let  a  line  be  drawn 
perpendicular  to  the  radius  vector  OP,  meeting  the  tangent 

in  T  and  the  normal  in  A^.  Then  TP  is  called  the  polar  tcm- 
gent,  NP  the  polar  normal,  TO  the  polar  subtangent,  and 
ON  the  polar  subnormal.  The  lengths  of  these  Imes  in  terms 
of  r  and  d  can  be  written  down  at  once;    e.g., 

TO  =  rtain(P  =  r^dd/dr, 

The  tangent  at  any  point  P  is  easily  drawn  by  calculatinu 

OT  and  then  joining  T  to  P. 

138.  Some  of  these  quantities  are  more  conveniently  ex- 
pressed in  terms  of  0  and  the  reciprocal  of  r.  Calling  this  11 , 

we  have  u=l/r,  du=  —  dr/r^;    hence  the  polar  subtangent 

TO=-dd/du. 

(/
7/
9\
 

i7r-\-
0,  

-r-) . 

Let  OG,  the  perpendicular  on  the  tangent,   =p. 

Then  *.•  OTP  is  a  right-angled  triangle  and  OG  the  per- 
pendicular from  the  right  angle  to  the  hypotenuse,  we  have 

J_  =  J_4-J_  i-    2.   /^\^  f^^ 

OG^    OP^^OT^'    ̂ ^    p^~'^  '^  \dOl  '  ^^ 
139.  The  polar  equations  of  some  of  the  commoner  curves 

are  as  follows: 

(1)  r  cos  0  =  a,  Si  straight  line. 
(2)  r  =  a  cos  0,  a  circle  of  diameter  a  (origin  a  point  on 

the  circumference,  initial  line  a  diameter). 

(3)  r2  cos  20  =  a^,  a  rectangular  hyperbola.  Fig.  98  (origin 
the  centre,  initial  line  the  transverse  axis). 

(4)  r^=*a^  cos  20,  a  lemniscate.  Fig.  27  (origin  the  centre, 
initial  line  the  axis). 
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(5)  ri  cos  id-  ai,  or  r(l+cos  d)  =  2a,  a  parabola  (origin 
the  focus,  initial  line  the  axis). 

(6)  H=aicos^/9,  or  r=^a(l+cos  <9),  a  cardioid,   Fig.  89. 

(7)  r(l+6  cos  ̂ )  =  m,  an  ellipse,  hyperbola,  or  parabola 
according  as  the  eccentricity  e<,  =,  or  >1  (pole  the  focus, 
initial  line  the  axis,  m  half  the  latus  rectum). 

(8)  r  =  n(l+e  cos  d),  a  limagon.  Figs.  88,  89,  90,  according 
as  e<,  =,  or  >1. 

Fig.  84. 

(9)  r  =  ad,  a  spiral  of  Archimedes,  Fig.  84. 
(In  Figs.  84,  85,  0  varies  from  a  little  less  than  —2n  to 

a  little  more  than  27r). 

Fig.  85. 

(10)  rd=a,  a  reciprocal  or  hyperbolic  spiral.  Fig.  85.' 

Fig.  86. 

(11)  r^e^a?,  a  lituus.  Fig.  86  {6  is  necessarily  +,  and 
varies  in  the  figure  from  0  to  a  little  more  than  27r,  r  is  ± 

for  a  given  value  of  6). 
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Fig.  87. 

(12)  r  =  a^y  a  logarithmic  or  equiangular  spiral,  Fig.  87 
(r=l  when  ̂   =  0,  r  =  a  when 
6=1  radian,  r<l  when  6  is 
negative). 

Since  6  may  be  supposed  to 
increase  or  decrease  without 

bound,  each  spiral  ̂ consists  of 
an  infinite  number  of  whorls  or 

spires. 140.  Equations  (1)  to  (6)  are  all  included  under  the  form 

r"*  cos  md  =  a"^;  in  (1),  (3),  and  (5)  m  has  the  valued  1,  2,  ̂, 
respectively;  in  (2),  (4),  (6),  it  has  the  values  —1,  —2 
—  J.  In  all  cases  a  is  the  intercept  on  the  initial  line.  The 
equation  r^  sin  md  =  a^  represents  the  same  series  of  curves, 
the  initial  line  having  been  turned  backward  through  the 
angle  7z/{2m).  Similarly  (9),  (10),  (11)  are  particular  cases 

of  the  equation  r"*  =  a"*^". 
141.  The  radius  vector  of  the  limagon,  equation  (8),  is 

proportional  to  the  reciprocal  of  the  radius  vector  of  a  conic 
section,  equation  7;  hence  the  limagon  is  called  the  inverse 
of  a  conic  section  with  regard  to  a  focus.  Since  r  =  en  cos  0  +  11, 
the  radius  vector  is  equal  to  that  of  a  circle  of  diameter  r// 

plus  a  constant  line  n,  and  hence  the  curve  is  easily  con- 
structed. (The  construction  or  auxiliary  circles  are  shown 

in  the  figures.)  | 

Fio.  88. Fig.  89. Fig.  CO. 

When  e=l  the  curve  becomes  a  cardioid  (eqn.  6),  which  is 
therefore  the  inverse  of  a  parabola.     When  e=2  the  curve  is 
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called  a  trisectrix,  the  loop  then  passing  through  the  centre 
of  the  circle. 

Examples. 

TYl 

1.  If  r^  =  a^6n^  show  that  tan  4>  =  -d. n 

(Differentiate  logarithmically.) 

2.  If  r"»  cos  m^  =  a^,  or  r^  =  a"»  cos  md,  show  that  tan  (/>  =  cot  m0, 
i.e.,  that  the  angle  between  the  radius  vector  and  normal  =  w^, 
and  hence  that  GOA  (Fig.  83)  =  (m-l)^. 

3.  In  the  logarithmic  spiral  r  =  a^  show  that  v^  is  constant  and 
=  cot~*  (logctt). 

In  Fig.  87.  a  =  1-318  cm.;  show  that  ̂   =  74°  33'. 
4.  To  find  the  polar  subtangent  of  a  conic. 

From  the  equation  I +e  cos  d  =  m/r  =  mu  we  have  —e  sin  6  dd 
=  mdu,  and  the  polar  subtangent  =  -dd/du  =  m/{e  sin  6). 

5.  In  any  conic  prove  that 

1     '2/1      l-e^\ 

p^    m\r       2m  /* 

6.  In  the  curve  r"»  cos  md  =  a"^  prove  that  pr"^-^  =  a"^. 
7.  Changing  the  sign  of  m,  show  that  pa^  =  r"^+^  in  the  curve 

fm  =  am  cosmO. 

8.  Show  that  the  polar  subnormal  of  any  curve  =  dr/dd. 
In  what  curve  is  the  polar  subnormal  constant? 
9.  In  what  curve  is  the  polar  subtangent  constant? 

10.  Show  that  the  polar  normal  ̂ ds/dO. 

As3miptotes. 

142.  The  position  of  any  line  is  known  when  its  direc- 
tion and  one  point  in  the  line  are  known.  We  may  there- 
fore determine  an  asymptote  by  finding  a  value  of  d  for 

which  r^oo  ot  u  =  0,  and  then  calculating  the  .coordinates 

(§  138)  of  T,  the  extremity  of  the  corresponding  polar  sub- 

^7:+dy  —J  ,  remembering  that  the  asymptote 

and  radius  vector  must  be  parallel. 
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Examples. 

1,  r  =  - — -    (Fig.   91),   or  w  =  — --    whence    —=-ad\    and 1  —  ̂   aO    a  du 

r  =  oo  or  w  =  0  when  ̂ =1.     Hence  the  asymptote  passes  through 

the  point  {^n  +  l,  —a)  or  (1—^7:,  a)  and  is  parallel  to  the  line 

Fig.  91.  Fig.  92. 

2.  Find  the  asymptotes  of  the  curve  {r  —  a)6^  =  r  (Fig.  92). 
Ans.  Lines  through  (i;r±I,  ±ia)  parallel  to  ̂ =  dbl. 

3.  Find  the  asymptote  of  the  reciprocal  spiral  rd  =  a  (Fig.  85). 
Ans.  A  line  through  (^tt,  a)  parallel  to  the  initial  line. 

4.  Show  that  the  initial  line  is  an  asymptote  to   the  lituus 

r'0  =  a'  (Fig.  86). 
5.  Find  the  asymptotes  of  the  curve  r  sin  4:0  =  a  (Fig.  93).         n 

Ans.  Four  pairs  of  parallel  lines,  each  pair  ̂ a  apart.      ■ 
(The  numbers  in  figures  indicate  the  order  in  which  the  branches 

are  formed  as  0  increases  from  0  to  2;r.) 

6.  Find  the  asymptotes  of  the  curve  r^  sin  40  =  a^  (Fig.  94). 
Ans.  Four  lines  passing  through  the  origin. 

7.  Find  the  asymptotes  of  the  curve  r  cos  2^  =  2a. 
Ans.  Four  lines  parallel  respectively  to  0  =  ̂7:,  6  =  ̂7:,  0  =  1::, 

O'^irr,  and  passing  through  the  points  (f?:,  —a),  {{t:,  a), 

(K  -a),  (fTT,  a). 
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j'  8.  Sho\^  that  the  rectangular  equation  of  an  asymptote  of  the 
curve  r~^  =  f{d)  is 

f'{(x.){x  sin  a—y  cos  a) +  1=0, 

where  «  is  one  of  the  roots  of  the  equation  f{0)  =  0. 

\J\  w 

Fig.  93. Fig.  94. 

Asymptotic  Circles. 

ad 
143.  In  the  curve  Fig.  91,  r  = =  — a  if  ̂ =±00, 

1 
l~d     1 

0 

and  hence  the  circle  of  radius  a  is  called  an  asymptotic 
circle.  The  curve  approaches  the  circle  from  the  outside 
when  6  increases  from  the  value  1 ,  and  from  the  inside  when 

0  decreases  from  the  value  0.  Similarly  r  =  a  is  an  asymptotic 

circle  of  the  curve  r(d^~l)=ad^  (Fig.  92). 

Points  of  Inflexion. 

144.  Whenever  the  extremity  of  the  radius  vector  passes 

through  a  point  of  inflexion,  the  perpendicular  on  the  tangent 
is  a  maximum  or  a  minimum,  and  hence  dp/dr  changes  sign. 

1  /du\ 2 
Differentiating  -3='^^+  \^)     (§  138)  we  have 

p2
 

2   ,       ̂      ,       2dud^u     ^,    f 
—  -^dp  =  2udu-\   -jr^ —  =  2du\u 

+ dOV 
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Also  r=\/Uf  dr=—du/u^, 

^ —v?'p^\u-\—^^\ 
dr 

dd^l 
dH 

[Ch.  XXXI. 

Hence  at  a  point  of  inflexion  '^  +  -7^2  changes  sign 

.    Examples. 

1.  Find  the  points  of  inflexion  on  the  curve  {r-a)d^  =  r  or 

aw  =  1  -  d-^  (Fig.  92).  Ans.  ( ±  Vz,  ̂a). 
2.  Find  the  point  of  inflexion  on  the  curve  r(l  -d)  =  aO  (Fig.  91). 

Ans.  ̂   is  a  root  of  the  equation  d^-d^-2  =  {),    :.  (§50) 
^  =  1.696rdn.  =  97°-2,  and  .*.  r=  -2* 437a. 

3.  Find  the  points  of  inflexion  on  the  lituus  r^6  =  a^  (Fig.  86), 
Ans.  (i,  ±aV2) 

4.  In  the  lemniscate  r'  =  a2cos2l9  (Fig.  27)  show  that  dp/dr 
=  3  cos  26,  and  hence  that  the  origin  is  a  point  of  inflexion  on  each 
branch. 

5.  Show  that  a  curve  is  concave  or  convex  to  the  origin  accord- 

mg  as  u  +  d^u/dd^  is  +  or  — . 

Multiple  Points. 

145.  The  equation  of  a  curve  being  r=f{d),  the  direction  of 
the  curve  at  the  origin  is  determined  by  the  values  of  0, 

Fio.  95. Fio.  96. 

which  satisfy  the  equation  f(d)=0.     If  this  equation  have 
two  or  more  roots  there  will  be  a  multiple  point  at  the  origin. 
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Examples. 

1.  In  the  lemniscate  r^  =  a^  cos  26  (Fig.  27)  the  equation 
cos2/?  =  0  gives  6=  ±^7v  for  the  directions  of  the  tangents  at  the 
origin. 

2.  Find  the  tangents  to  the  curve  r  =  a  sin  4:6  (Fig.  95)  at  the 

origin.  Ans.  6  =  0,  jn,  ̂tt,  Itt. 
These  Hues  are  also  tangents  to  the  curve  r^  =  a^  sin  4:6  (Fig.  96) 

at  the  origin. 

3.  Find  the  tangents  to  the  curve  r  =  a  sin  3^  at  the  origin. 
Ans.  6  =  0,  ̂n,  ̂Tt. 

4.  Show  that  the  curve  {r  —  a)6^=-r  (Fig.  92)  has  a  cusp  at  the 
origin. 

Curvature. 

146.  Let  PD,  QD  be  consecutive  normals  (see  §84),  and 

let  the  angle  PDQ  =  A<j).  We  shall  first  show  that  DP-DQ 
is  an,  infinitesimal  of  at  least  the 

second  order,  PQ  or  Acj)  being  of 
the  first. 

Draw  QF  perpendicular  to  DP. 
Then 

DP-DQ  =  FP-DQ{l-co^  Aj>). 

But  1  — cosJ^  is  of  the  second 

order;  so  is  FP,  since  it  =  chord 
PQXcosFPQ,  and  each  factor  is 

infinitesimal.  Hence  DP-DQ  is  of 
at  least  the  second  order. 

Let  PD  =  n,  then  QD  may  be 
written  n  +  /. 

Let  OP=-r,  OQ  =  r-^Ar,  OT  =  p,  OT'  =  p-\-Ap.     Then  in  the 
triangle  OPD 

0D^  =  P0^-^PD^-2P0  .  PD  cos  OPD 

= r^  +  n^—  2rn  sin  (p  =  r^+n^—  2pn. 
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Hence  in  the  triangle  OQD 

OD2=(r  +  ir)2  +  (n  +  /)2-2(p  +  Jp)(n  +  /). 

Equating  and  simplifying, 

0  =  2rJr-2nJp  +  Ii,  .'.  £n  =  £{r  Jr/Jp). 

But  £n  =  R,  the  radius  of  curvature  PC,  §  84. 

Hence  also  (§§  138,  144) 

1        b'-^&l R 
(Pu\  ^  I       (fu\ 

«V(«+^)      «^("+^) 

1  idu,  2ni [^-^iQ] 

Examples. 

1.  Find  the  radius  of  curvature  at  any  point  of  r"»cosm^  =  a*» 

or  pr"»-*  =  a"*. 

-AtW.  R=  —~   -T — =  — ■;   —r. (m-l)a"»         (m-l)p 

a"*  r^ 
If  r"»  =  a«  cos m^,  R=-- — -77— — i  =  7 — TTn"- 

2.  The  equation  r^  =  p^-{-a^  represents  an  involute  of  a  circle, 
find  72. 

3.  In  the  logarithmic  spiral  r  =  a^,  p  =  rsin0,  and  v^  is    con- 
stant, hence  R  =  r /sin  v^  =  the  polar  normal. 

4.  Show  that  the  evolute  of  the  logarithmic  spiral  is  an  equal 
logarithmic  spiral. 

[OC  is  a  radius  vector  and  PC  a  tangent  to  the  evolute,  and  in 

this  case  the  angle  0CP=4'i  a  constant.] 
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5.  Prove  that  in  any  curve 

/dr\  ̂       d^r' 

\dd)    ~^dd' 
[We  have  u  =  l/r,  du= —dr/r^,  d^u= —{r^d^r—2r  dr^)/r*,  to 

substitute  in  (2).] 

6.  In  the  spiral  r  =  ad  (Fig.  84),  R={a'  +  r'y^/{2a^+r^), 
7.  In  the  spiral  rd  =  a  (Fig.  85),  R  =  r{a^  +  r^y^/aK 
8.  If  a  curve  touch  the  initial  line  at  the  origin,  prove  that 

i2  =  the  limit  of  ̂ r/d  at  that  point;  and  hence  show  that  the  radius 
of  curvature  of  the  curve  of  Fig.  91  at  the  origin  is  half  the  radius 
of  the  circle  in  the  figure. 

9.  Find  R  for  the  curve  r  =  a  sin  nd  at  the  origin.      Ans.  ̂ na. 
10.  Prove  that  the  intercept  of  the  circle  of  curvature  on  the 

radius  vector  of  any  curve  =  2p  dr/dp. 
In  the  curves  r^  cos  md  =  a^  and  r^  =  a"*  cos  md  show  that  these 

chords=  — 2r/(m  — 1)  and  2r/(w  +  l),  respectively. 

Areas,  etc. 

147.  Let  AOP=d,  POQ  =  dd,  OP-r,  OQ  =  r  +  Jr.  (1)  The 
area-increment  POQ  lies  between  the  circular  sectors 

POD,  EOQ,  whose  areas  are  ̂ r^dd, 

\{r  +  Jrfdd.      .-.  2.YQ2.P0D  =  hrHd-\-L 
Hence  the  area  between  the  curve 

and  two  radii  vectores  is 

^1  r'^dd. 

(2)  The  area  bounded  by  two  radii 

vectores  and  two  given  curves  ri  =  fi(d)  and  r2  =  J2{0)  is 

h\\r2^~n^)dd    or     \[\r2^+n^)dd 

according  as  the  curves  lie  on  the  same  side  or  on  opposite 

sides  of  the  origin. 
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(3)  The  length     s  =  [</s  =  IVr^dd^+dr^, 
taken  between  assigned  limits. 

(4)  The  area  of  the  surface  formed  by  the  revolution  of 

the  curve  about  the  initial  line  is  (§  125  (4)  ) 

2;r  r  sin  ̂   ds. r  si] 

Examples. 

1.  The  cardioid  r  =  a  cos^^^  ̂ Fig.  89). 

(1)  The  area  =  ̂ a  ̂    cos^  ̂ d  dd  =  |;ro». 

(2)  The  length-element  ds  =  VrW^ -^  dr^  =  a  cos  ̂ d  dd,  which 
does  not  change  sign  while  d  increases  from  —n  to  ;:,  Hence  the 
whole  length  of  the  curve  is 

a       cos  ̂ ^  ci^  =  4a.* 

(3)  The  surface  of  revolution  about  the  initial  line 

=  2;r    r  sin  ̂   ds  =  27r     a  cos'^^  .  sin  ̂   .  o  cos  ̂ 0  dd 
Jo  Jo 

=  2;ra'r  cos^^^  sin  ̂ 6  d^  =  |;ra'. 

(The  volume  =  i;ra',  §  178,  Ex.  6.) 
2.  The  spiral  of  Archimedes  r  =  a6  (Fig.  84). 

(1)  Let  it  be  required  to  find  the  area  included  between  the 

nth  and  (n  +  l)th  spires.  On  the  former  r  =  a[2(n-l)7r  +  ̂],  and 
on  the  latter  r  =  a[2n7r  +  6],  hence  the  area  between  them 

-^a'f  T(2n7r  +  ̂ )'-^2(n-l);r  +  ̂ jMd^  =  87r»a»n, 

and  is  .*.  proportional  to  n. 

*  A  change  in  the  sign  of  the  length-element  indicates  a  cusp, 
which  occurs  in  this  case  when  0=::.  As  0  increases  the  area-element 

^r^dO  can  change  sign  only  with  r^,  i.e.,  wlion  r  becomes  imaginary. Hence  if  we  h^  integrated  between  the  hmits  0  and  2?:  we  should 
liave  obtained  0  for  the  length,  whereas  the  area  would  have  been  the 
game  as  above. 
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(2)  Show  that  the  area  of  the  first  spire  {d  varying  from  0 

to27r)   =87r3aV6. 
(3)  The  length  of  the  curve  from  the  origin  to  r  =  ri  is 

(see  §  112,  Ex.  2). 

This  is  easily  shown  to  be  the  same  as  the  length  of  the  parabola 

y^  =  2ax  from  the  vertex  to  y  =  ri. 
3.  The  lemniscate  r'  =  a'cos20  (Fig.  27). 

(1)  The  area  =  a2. 
(2)  Show  that  rds  =  oW. 

(3)  The  surface  of  revolution  about  the  axis  =  27ra^(2  — V2). 
(4)  The  surface  of  revolution  about  a  tangent  at  the  centre 

=  47:^2. 

[This  tangent  being  taken  as  initial  line,  the  equation  becomes 

r2  =  a2  sin  2^.] 
j*     If  (ji^f 

4.  Prove  that  the  length  of  any  curve  =    —?===,  and  that  the 
jVj^  — p 

|p<fe-ij; pr  dr area  =  ij^^^     ̂j  ̂_ 
5.  To  find  the  length  and  area  of  the  logarithmic  spiral  r  =  a^ 

(Fig.  .87). 

(1)  Let  v^  be  the  constant  angle  between  the  radius  vector 

and  the  tangent.     Then  ds  =  dr/ cos  (/-,  whence 

r^2   dr       r^-Vi 

J    cos  0  ~  cos  ̂ ' 

where  r^  and  r^  are  the  radii  vectores  of  the  extremities  of  the  arc. 

(2)  For  the  area,  \p  ds  =  ̂r  sin  <p  dr/ cos  4^. 

:.  area  =  ̂   tan  0    V  c?r  =  i (rj^-ri^)  tan  ̂ . 

6.  The  length  of  the  spiral  r  =  e-^  from  ̂   =  0  to  (9  =  oo  is  \/2. 
7.  In  the  curve  r^^a^  sin  4^  (Fig.  96)  show  that  the  area  of 

each  loop  =  \a'^. 
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8  In  the  curve  r  =  a  nin  40  (Fig.  95)  show  that  the  area  of  each 

loop  =  i67:a' --i  that  of  the  circumscribed  circular  sector  (centre 
the  origin). 

1       i        1 

9.  Prove  that  the  length  of  the  curve  r"  =a"  cos  -^  is n 

nin-2)  .  .  . 

(/i-l)(n-3)...-^'^''' 
where  a  is  1  or  ̂ n  according  as  n  is  even  or  odd. 

10.  In  the  spiral  rd  =  a  (Fig.  85)  show  that  the  area  bounded 
by  two  radii  vectores  and  the  curve  is  ̂ air^-r^). 

11.  The  polar  equation  of  the  cissoid  (Fig.  41)  is  r  cos  0  =  a  sin^O, 
that  of  its  asymptote  is  r  cos  0  =  a,  that  of  the  circle  of  diameter 
a  is  r  =  a  cos  6 ;  show  that  the  area  between  the  cissoid  and  its 

asjTnptote  =  f ;ra^,  and  that  the  area  between  the  cissoid  and  the 
circle  =  (i;r-l)a^ 

12.  Find  the  area  of  a  sector  of  the  rectangular  hyperbola 

/•2  cos  26  =  a^  (Fig.  98)  between  ̂   =  0  and  0=  a. 
Ans.  \a^  log  tan  {{n  +  a). 

13.  Find  the  area  of  a  sector  of  any  hyperbola  between  ̂   =  0 

and  6=  a,  the  centre  being  the  origin  and  the  transverse  axis  the 
initial  line.  ,        ,   ,,       /6  +  atana\ 

Ans.  iab  log  (  r   :    | . *        ̂   \b-a  tan  a/ 

14.  Find  the  area  of  an  elliptic  sector  between  ̂ =0  and  6  =  a, 
the  centre  being  the  origin  and  the  major  axis  the  initial  line. 

Ans.  ̂ ab  tan-^  ( —  tan  a\  , 

15.  Show  that  the  area  of  the  limagon  r  =  n(H-e  cos  ̂ )  is 
7:n\l  +  ie'). 

16.  The  chord  which  is  drawn  through  the  origin  so  as  to  cut 
off  from  a  given  curve  a  segment  of  maximum  or  minimum  area 
is  bisected  by  the  origin. 

For  d  isiresL)  =  ̂ r,^dO-^r^^dO  =  0,  .'.  ri  =  r.,. 
17.  Find  the  area  enclosed  by  the  curves 

(1)  r'  =  a^cos'0  +  b'sm^O.        Ans.  Ma'-\-b'). 
(2)  r'  =  a'  cos'^  -  b^  sm'O.  ab  +  {a^-  6')  t&n-' (a/b). 

18.  The  area  of  the  common  parabola  r  cos^  ̂ d  =  a  from  ̂ =0 
to  ̂   =  a  is  a'(tan  ̂ a  +  J  tan'  ̂ a). 
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19.  If  the  conchoid  r  =  a  sec  6 -h  has  a  loop,  show  that  the  area 

of  the  loop  is  a'^h'^  —  a^-v¥cos-^{a/h)—2ahQo^hr^{h/a). 

148.  It  is  in  general  impossible  to  obtain  the  area  exactly 
unless  one  coordinate  can  be  expressed  in  terms  of  the 
other,  or  each  in  terms  of  a  third  variable. 

When  the  rectilinear  equation  of  a  curve  consists  of  terms 

of  two  dimensions  only,  both  x  and  y  are  expressible  in 
terms  of  m,  the  slope  of  the  line  drawn  from  the  origin  to 

(x,  y).  We  can  sometimes  obtain  the  area  by  taking  m 
as  the  variable. 

If  m  =  tan  d,  dm  =  sec^^  dO,  .'.  Jr^  dO  =  Jr^  cos^^  dm  =  \x^  dm. 

the  area  =  ̂   hc^  dm. 

between  two  cur^ 

i\{x2^±x^^)dm. 

The  area  included  between  two  curves  will  be 

Examples. 

1 .  The  ellipse  ax"^  +  hxy  +  cy"^  =  k. 
Substituting  mx  for  y,  we  have  x^  =  k/{a  +  hin  +  cm^). 
Hence  the  whole  area 

r°°  kdm  27tk        ,       .  .^^  /.^n (see  §  108  (1)). 

2.  (I)  The  folium  x'  +  y'  =  Saxy  (Fig.  28). 
Here  x  =  3am/{l+m^),  .'.  area  of  the  loop 

^Jy   (l+m^)'      ̂          ̂  

(2)  On  the  asymptote  x  +  y-\-a  =  0,  m=  -a/{l+m);  hence 
the  area  in  the  second  and  fourth  quadrants  between  the  curve 
and  the  asymptote 

,r    r      a'  9a'm'  n,  , 

^^J_ooL(rT^^-(iT^O^^="- 
Adding  ̂ a^  the  area  of  the  triangle  ODE,  we  have  the  whole 
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area  between  the  curve  and  the  asymptote  =  fa^  =  the  area  of  the 
loop. 

3.  Find  the  area  of  the  closed  part  of  the  curve  a^y'^iy — x)  +  x"  =  0. Ans.  ̂ a?. 

4.  Find  the  area  of  a  loop  of  the  following  curves: 

(1)  ay'-3ax^y  =  x''-,  Fig.  36.  Ans.  M\/3a'. 
(2)  ay'  -  axY  =  x\  Fig.  37.  ^ha\ 
(3)  x'-\-y'^Aa^xy.  ^nd^, 
(4)  ax^+y^  =  axy,  ^a'. 



CHAPTER  XXXII. 

ASSOCIATED  CURVES. 

Inverse  Curves. 

149.  If  on  the  radius  vector  r  of  a  curve,  a  distance  r' 
is  measured  from  the  origin  so  that  rr'  =  k^,  where  k  is  con- 

stant, the  locus  of  the  extremity  of  r'  is  called  an  inverse 
of  the  given  curve.  The  radius  vector  of  the  inverse  curve 
is  proportional  to  the  reciprocal  of  that  of  the  given  curve, 
and  its  polar  equation  may  be  found  from  that  of  the  given 

curve  by  substituting  k^/r  for  r.  Thus  (see  §  139)  the 
inverse  of  the  equilateral  hyperbola  with  reference  to  the 
centre  is  a  lemniscate  (Fig.  98),  that  of  a  conic  section  with 
reference  to  a  focus  is  a  limagon  of  the  form  Figs.  88,  89, 

or  90,  according  as  e  is  <,  =,  or  >1,  i.e.,  according  as  the 
conic  is  an  ellipse,  parabola,  or  hyperbola. 

Examples. 

1.  Show  that  the  inverse  of  a  circle  with  reference  to  a  point 
on  the  circumference  is  a  straight  line,  and  that  with  reference 
to  any  other  point  it  is  a  circle. 

2.  The  angle  between  the  radius  vector  and  the  tangent  at 
any  point  of  the  inverse  is  the  supplement  of  the  corresponding 
angle  in  the  given  curve. 

For,  if  OPQ,  OP'Q'  (Fig.  98)  are  consecutive  (see  §  84)  radii 
vectores  meeting  one  curve  in  P,  P',  and  the  other  in  Q,  Q',  the 
rectangles  OP  .  OQ,  OP'.  OQ'  are  equal,  .'.a  circle  may  be  described 
through  P,  Q,  F,  Q\  .' .  Q'P'P  +  PQQ'  =  two  right  angles;  hence, 
supposing  P'  to  approach  P,  the  tangents  at  corresponding  points 

165 
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P  ana  Q  make  supplementary  angles  with  the  common  radius 
vector. 

Otherwise  thus :   r  =  k^/r%    .' .  log  r  =  log  k^ — log  r', 

.  • .  -dr/dd  =  — ^dr'/dd,    or     cot  ̂   =  -  cot  0',    .  * .  0'  =  ;r  -  0. r  r 

3.  Hence  show  that  the  inverse  of  a  logarithmic  spiral  with 
reference  to  its  origin  is  a  logarithmic  spiral. 

4.  Show  that  the  curves  Figs.  84  and  85,  93  and  95,  and  94 
and  96  are  the  inverse  of  each  other. 

Pedal  Curves. 

150.  The  locus  of  the  foot  of  the  perpendicular  from  a 
given  point  on  the  tangent  to  a  given  curve  is  called  the 
pedal  of  the  curve  with  reference  to  the  point.  For  ex- 

ample, the  pedal  of  a  parabola  with  reference  to  its  focus 
is  a  straight  line  (the  tangent  at  the  vertex);  the  pedal 
of  an  ellipse  or  hyperbola  with  reference  to  a  focus  is  a  circle 
(the  auxiliary  circle). 
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In  Fig.  97,  T  and  T'  are  consecutive  points  on  the  pedal, 
corresponding  to  P  and  Q  on  the  given  curve;  and  the  hmit 

of  position  of  TT'  produced  is  the  tangent  to  the  pedal.  If 
the  angle  AOr  =  (^  and  OT  =  p,  then  (^,  p)  are  the  polar  coor- 

dinates of  the  point  on  the  pedal  corresponding  to  (6,  r) 
on  the  given  curve.  If  then  we  can  express  p  in  terms  of  r, 
and  (j)  in  terms  of  0,  the  polar  equation  of  the  pedal  will 
be  easily  obtained  from  that  of  the  given  curve. 

Examples. 

1.  The  pedal  of  an  equilateral  hyperbola  is  a  lemniscate  (Fig.  98). 

For  pr  =  a''  (Ex.  6,  §  141),  and  <j>  =  d  (Ex.  2,  §  141),  hence  sub- 
stituting in  r2cos2^  =  a2  we  have  a^  cos2(f>  =  p^,  or  writing  d 

and  r  for  </>  and  p,  r^  =  a^  cos  20,  the  equation  of  the  lemniscate. 
In  a  similar  way  it  may  be  shown  that  the  pedal  of  any  curve 

of  the  form  r^cosmd  =  a^  is  r»cosn^=ow,  where  n=m/{l—m), 
and  that  the  pedal  of  r"»  =  a^  cos  m^  is  r«  =  a^cosn^,  where 
n=m/{\+m). 

2.  The  angle  between  the  radius  vector  and  tangent  at  any 

point  of  the  pedal  =  that  between  the  radius  vector  and  tangent 
at  the  corresponding  point  of  the  given  curve. 

For,  in  Fig.  97,  let  OP  produced  meet  T'Q  in  S.  Then  0,  T,  T', 
S  are  on  the  circumference  of  a  circle  since  the  angles  at  T,  T' 

are  right  angles,  .*.  OT'T  =  OST ,  and  the  limits  of  these  angles 
are  the  angles  referred  to  in  the  enunciation.  (In  Fig.  98,  OPT 

=  OTV,  if  PT  and  TV  are  tangents.) 
3.  Prove  that  the  pedal  of  a  circle  with  reference  to  any  point 

is  a  limagon  of  the  form  Figs.  88,  89,  or  90,  according  as  the  point 
is  inside,  on,  or  outside  the  circumference.  (These  figures  are 
the  pedals  with  reference  to  0  of  the  circles  with  centres  B  and 
radii  5.4.) 

4.  Show  that  the  pedal  of  a  logarithmic  spiral  with  reference 
to  its  origin  is  also  a  logarithmic  spiral. 

5.  Find  the  pedal  of  a  parabola  with  reference  to  its  vertex. 

Ans.  r  cos  6==  a  sin^^,  the  polar  equation  of  the  cissoid,  Fig.  41. 
(The  directrix  of  the  parabola  is  the  asymptote  of  the  cissoid.) 
6.  Show  that  the  pedal  of  the  involute  of  a  circle  is  a  spiral 

of  Archimedes.  (It  will  be  found  that  tan  ̂   is  proportional  to 
the  radius  vector.) 
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7.  Find  the  pedal  of  the  ellipse  with  reference  to  the  centre. 

Ans.  r^  =  a}  cos^^  4-  h"^  ̂ m}Q, 

Polar  Reciprocals. 

151.  The  inverse  of  the  pedal  of  a  curve  (both  pedal  and 
inverse  being  taken  with  reference  to  the  same  point)  is 

called  the  'polar  reciprocal  of  the  given  curve. 

Examples. 

1.  Show  that  the  polar  reciprocal  of  a  circle  with  reference  to 
any  point  is  a  conic  section. 

2.  Find  the  polar  reciprocal  of  a  parabola  with  reference  to 
its  vertex  and  with  reference  to  its  focus,  of  an  ellipse  with  refer- 

ence to  its  centre  and  with  reference  to  its  focus. 

3.  Show  that  the  polar  reciprocal  of  a  logarithmic  spiral,  r  =  a?^ 
with  reference  to  its  origin  is  another  logarithmic  spiral. 

Roulettes. 

152.  When  one  curve  rolls  on  another,  the  curve  described 
by  any  point  connected  with  the  rolling  curve  is  called  a 
roulette. 

The  simplest  case  is  the  cycloid,  the  properties  of  which 
have  already  been  considered.  Any  involute  of  a  curve 
may  also  be  regarded  as  the  roulette  traced  by  a  point  in 
the  tangent  of  the  curve  as  it  rolls  round  the  curve. 

153.  The  property  of  the  normal  of  the  cycloid  holds 
for  all  roulettes,  viz.,  the  normal  to  the  roulette  at  the  tracing 
point  passes  through  the  point  of  contact  of  the  fixed  and 
moving  curves,  since  at  each  instant  the  point  of  contact 
may  be  regarded  as  an  instantaneous  centre  of  rotation. 

154.  When  a  circle  rolls  on  a  straight  line  any  point  not 
on  the  circumference  describes  a  curve  called  a  trochoid, 
the  equations  of  which  are  easily  shown  to  be 

x=a6—b  sin  d,  y  =  a—h  cos  d, 

where  a  is  the  radius  of  the  circle  and  b  the  distance  of  the 

tracing  point  from  the  centre  (axes  as  in  Fig.  19). 
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155-  When  the  circle  rolls  on  the  circumference  of  a  fixed 
circle,  the  curve  described  by  a  point  in  its  circumference 
is  called  an  epicycloid  or  a  hypocycloid  according  as  the  circle 
rolls  on  the  outside  or  inside  of  the  fixed  circle.  Corre- 

sponding to  these  curves  we  have  epitrochoids  and  hypo- 
trochoids  described  by  points  not  in  the  circumference. 

Fig.  99. 

For  the  coordinates  of  any  point  P  (Fig.  99)  on  the  epi- 
cycloid we  have 

x=OB=OD  cos  d-PD  cos  (d  +  d'). 

Hence,  since  arc  PE  =  hd' =  AE  =  aO , 

L 
x=(a-\-b)  cos  d—b  cos  (         j  d. 

Similarly,      y=(a  +  b)  sin  d—b  sin  (—7—)  ̂- 
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The  X  and  1/  of  a  point  on  the  hypocycloid  may  be  obtained 

n  a  similar  way  (or  from  the  epicycloid  by  changing  the 

sign  of  b)f  and  are 

x=  (a—b)  cos  d-\-b  cos  (— r— )  ^• 

y  =  (a—  b)  sin  0—  b  sin  ( —7—  ]  d. 

The  equations  of  the  epitrochoid  and  hypotrochoid  are 
of  the  same  form,  the  coefficient  b  in  the  second  term  being 

changed  into  h,  where  h  is  the  distance  of  the  tracing  point 
from  the  centre  of  the  rolling  circle. 

Examples. 

1.  Show  that  in  any  epicycloid 

ds  =  2{a  +  b)sm^de  =  2{a  +  h)—sm-dd', ^0  a        ̂  

and  hence  that  the  length  of  the  curve  from   cusp  to  cusp  is 
8{a  +  b)b/a. 

2.  Show  that  the  epicycloid  is  a  cardioid  when  b  =  a. 

3.  Show  that  the  hypocycloid  is  the  curve  xi+yi'=ai  (Fig.  18) 
when  b  =  \a. 

4.  When  a  circle  rolls  inside  another  circle  of  double  its  diam- 

eter, show  that  every  point  in  the  circumference  describes  a  straight 
line  and  every  other  point  an  ellipse. 

5.  The  radius  of  curvature  at  any  point  of  an  epicycloid 

4(a  +  6)6   .    ad    4(a  +  6)6   .    6'    2{a  +  b)      ̂      ̂   ̂ „ 
=  -^ — T^  sm  —  =  '    sm  -  =  '  X  chord  EP a +  26  26       a +"26  2       a +  26 

and  is  therefore  proportional  to  the  chord  EP. 

For,  if  the  tangent  at  P  make  an  angle  <l>  with  OX,  <^=^  +  ̂< 
SindR  =  ds/d(j>  (§85). 

6.  Show  in  a  similar  way  that  in  the  cycloid 

x  =  a{d  -Bind),     y  =  a{l-co8d),     Fig.  60. 

ds  =  PBdO,4>  =  ̂ n'- ^6,  and  hence  that  R  =  2PB, 
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Envelopes. 

156.  Let  f{x,y,a)=0  represent  the  equation  of  a  curve 
(i.e.  of  any  plane  locus,  including  a  straight  line),  a  being  a 
quantity  involved  in  the  equation,  but  independent  of  x 

and  y  for  its  value.  As  a  may  have  any  value  the  equa- 
tion may  be  regarded  as  representing  a  family  of  curves. 

Supposing  a  to  have  a  certain  value  in  one  instance,  let  it 
receive  an  increment  J  a.     The  two  equations 

j{x,y,a)=0     (1),         f{x,y,a  +  Ja)=0     (2) 

then  represent  two  curves  of  the  family.     Their  points  of 
intersection  approach  limits  of  position  as  Ja  =  0.     The  locus 

of  these  point-limits  for  all  values  of  a  is  called  the  envelope 
of  the  family  of  curves. 

The  quantity  a  is  called  a  variable  parameter. 

Fig.  100. 

Ex.  y=a^x  +  (x  represents  a  family  of  straight  lines.     Consider 
the  two  for  which  a  is  1  and  1+Ja  respectively.     The  lines  ?/  =  x  + 1 , 

/  1        1+Ja\ 

y={l  +  Jayx  +  {l+Ja)  intersect  in  the  point  (  ~r,  ,   >   >  oTJ~) ' 

The  limit  of  this  when  ia  =  0  is  (-i,  i).     This  is  therefore  one 
point  on  the  envelope  of  the  family. 
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157.  Equation  of  the  envelope.  The  points  of  intersec- 
tion of  (1)  and  (2),  §  156,  lie  on  the  curve 

jix,y,a  +  Ja)-fix,y,a) 

since  this  equation  is  satisfied  by  any  simultaneous  values 

of  X  and  y  which  make  ]{x,y,a)  and  j{x,y,a+Ja)  sepa- 
rately =0.     As  Ja  =  0  the  limit  of  (3)  is 

df(x,  y,  a) 

da       -^'  (^) 

the  differentiation  being  partial  since  only  a  varies.  The 

point-limits  of  the  intersections  of  (1)  and  (2)  therefore 
lie  on  (4),  and  their  locus,  the  envelope,  is  obtained  by 
eliminating  (a)  from  (1)  and  (4). 

Ex.  Equation  (4)  for  y=a^x  +  a  is  2aa:  +  l  =  0.  Eliminating  a, 
4:xy  =  —  1  The  envelope  is  therefore  a  rectangular  hyperbola 
(Fig.  100). 

158.  Prop.  The  envelope  touches  every  curve  0}  the  family. 
Lei  u  stand  for  j{x,  y,  a),  and  suppose  {x,  y)  to  be  a  point 
common  to  the  envelope  and  curve  (1),  §  156.  For  dy/dx, 
the  slope  of  the  tangent  of  (1),  we  have  (§47), 

'du        3w 

a  being  constant.  We  may  consider  (1)  to  be  also  the 
equation  of  the  envelope,  a  being  a  variable,  viz.,  that 
function  of  x  and  y  obtained  from  (4) .    Hence  for  the  envelope 

But  9u/9a  =  0  from  (4).  Hence  dy/dx  at  {x,y)  is  the 
same  for  (1)  and  the  envelope. 

Ex.  In  the  example  of  §§156,  157,  y=x-{-l  and  the  envelope 
Axy  =  —  1  touch  at  the  point  ( — ^,  ̂). 
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159.  The  given  equation  may  contain  two  or  more  vari- 
able parameters,  subject  however  to  other  relations  con- 

necting them,  whereby  all  except  one  may  be  eliminated 
from  the  given  equation. 

Ex.  To  show  that  all  ellipses  having  the  same   centre  and 
area,   and   their  axes   in   the 
same  directions,  touch  a  pair 
of   hyperbolas   of   which    the 
axes  are  asymptotes. 

We  have  to  find  the  envelope 

of  a:V«^  +  2/V/5^  =  l,  where  a/3 
=  k^,  a  constant,  whence 
/?  =  /cV«. 

Substituting,  the  equation 

becomes   x^/a^  +  a^y^/k*  =  l. 
Differentiating  with  regard 

to  a,     -2xya^  +  2ay^/k^  =  0. 
Eliminating    a,    xy=  ±^k\  Yig.  101. 

the  envelope  (Fig.  101). 

Examples. 

1.  Two  sides  of  a  right-angled  triangle  are  given  in  position 
and  the  area  is  constant,  find  the  envelope  of  the  hypotenuse. 

Ans.  A  rectangular  hyperbola. 
2.  Particles  are  projected  in  the  same  vertical  plane  with  the 

same  velocity  v,  but  at  different  elevations;  show  that  their  paths 
all  touch  the  parabola 

9   V     2g)' of  which  the  point  of  projection  is  the  focus. 
[In  other  words  find  the  envelope  of 

y  =  x  tan  a—gx^/{2v^cos^a).] 
3.  Show  that  the  circles  described  on  the  double  ordinates  of 

the  parabola  y^  =  ̂ ax  as  diameters  touch  the  equal  parabola 
y^  =  ̂ a{x-\-a). 

4.  Find  the  envelope  of  ua'^  +  va  +  w  =  (),  where  u,  v,  w  are 
functions  of  x  and  y.  Ans.  v^  =  4:uw. 
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The  result  is  the  same  as  the  condition  that  the  given  equation 
should  have  equal  roots.     Explain. 

5.  Find  the  envelopes  of 

u  co8'^6  +  v  sin^^  = 

w, 

(1) 

wsec^^-vtan'"^  = 

■w. 

(2) 

Am.  (1)  u^  +  v^-- 

(2)  u»— y«  = 

where  n 
2 

~2-m 

• 

Many  examples  may  be  reduced  to  these  by  observing  that  a 

condition  of  the  form  (  — |    +(r)   =lis  equivalent  to  the  two 

relations  a  =  acos^^,  /?  =  6  sinr  ̂ ,  while(  — )   ~  ( t)   =lisequiva- 

1.  ^ 
lent  to  a  =  a  seer  ̂ , /?  =  ?)tanr^. 

6.  Find  the  envelope  of  a  line  which  moves  in  such  a  way  that 
the  sum  of  its  intercepts  on  the  axes  is  constant. 

We  have  — +^  =  1,  and  a+p  =  k.    We  may  substitute  the  value 

of  P  and  then  differentiate,  or  we  may  proceed  as  follows : 

Let    a  =  fccos^^,    ̂   =  A;sin^^;     the    line    becomes    a:(cos  ̂ )-'  + 

2/(sin  d)-'^  =  kj  hence  (Ex.  5)  the  envelope  is  x*  +  ?/*  =  A;i,  a  parabola    \ 
touching  the  axes. 

7.  A  straight  line  of  given  length  k  moves  with  its  extremities 
on  two  rectangular  axes,  find  the  envelope  of  the  line. 

Ans.  x^  +  yi  =  k^y  a  four-cusped  hypocycloid. 
8.  Given  in  position  the  axes  of  an  ellipse  and  that  their  sum 

=  2A;,  show  that  the  ellipse  touches  the  curve  xi-\-yi  =  k^. 

—j     ±(4)     =1   perpendiculars  are 
drawn  to  meet  the  axes  in  A  and  B,  find  the  envelope  of  AB. 

Ans.    I—)    ±l-r)    =1,  where  n=   ~. \a/         \b/  m  +  1 

x^     y^ 10.  To  the  ellipse  or  hyperbola  —  ±  ̂   =  1  pairs  of  tangents  are 

x^     y^ 
drawn  from  points  in  the  ellipse  —2+-r-i  =  '^,  show  that  the  chords 
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of  contact  touch  the  ellipse 

11.  When  the  tangents  are  drawn  from  points  in  the  hyperbola 

-^  — ,  -  =  1,  show  that  the  chords  of  contact  touch  the  hyperbola 

12.  The  e volute  of  a  curve  may  be  considered  to  be  the  en- 
velope of  its  normals ;  find  in  this  way  the  evolute  of  an  ellipse. 

The  normal  at  (a,  /?)  is   —  =a^  —  b^f 

or,  writing  a  cos  6  for  «,  and  b  sin  6  for  /?, 

X  .  a(cos  6}-  —y.b  (sin  d)-^  =  a^  —  b^, 

the  envelope  of  which  is  (Ex.  5), 

{ax)i  +  {by)i  =  ia'-b')i, 
which  is  therefore  the  evolute  (cf.  §  89). 

13.  Show  in  a  similar  way  that  the  evolute  of  the  hyperbola  is 

iax)i-{by)i  =  ia'  +  b')i. 

14.  Parallel  rays  of  light  are  reflected  from  the  circumference 
of  a  circle.     Find  the  envelope  of  the  reflected  rays. 

Take  the  centre  for  origin  and  the  a:-axis  parallel  to  the  incident 
rays.  The  equation  of  the  ray  reflected  from  the  point  (o  cos  6, 
a  sin  0)  is 

X  sin  2d-y  cos  2d-a  sin  6  =  0, 

whence  the  envelope  is 

X  =  ia(3  cos  6  -  cos  3^),    y  =  ia(3  sin  6  -  sin  3^), 

an  epicycloid  formed  by  a  circle  of  radius  la  on  a  circle  of  radius  ̂ a. 
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CENTRES  OF  GRAVITY. 

i6o.  In  finding  the  coordinates  ^,  y  of  the  centre  of 
gravity  of  a  body,  we  suppose  the  body  to  be  divided  into 
parts  of  weights  Wi,W2  ■  -  -,  and  of  which  the  centres  of  gravity 
are  the  points  {xi,  yi),  fe,  2/2),  ...  ,  then  equate  the  sum 
of  the  moments  of  the  weights  to  the  moment  of  the  sum 
of  the  weights  if  placed  at  the  centre  of  gravity.  Thus 

supposing  gravity  perpendicular  to  the  x-axis  we  have 

WiXi-{-W2X2-\-.  '  .   ={Wi-\-W2-\-.  .  .)Xj 

-._W\Xi-\-W2X2-\-.  '  ._IWX 

1^1  + 1^2  +  .  .  .  ̂ W  ' 
Similarly  supposing  the  body  and  the  axes  placed  so  that 

gravity  is  perpendicular  to  the  y-a,x[s,  we  have 

-_wiyi+W2y2  +  -  •  ' _2wy 

These  formulae  also  hold  when  the  points  are  not  in  one 

plane,  there  being  also  a  third  coordinate, 

If  the  parts  referred  to  are  infinitesimal  the  sign  of  inte- 
gration replaces  that  of  summation  to  indicate  the  limit  of  a 

sum. 

161.  The  division  into  parts  and  the  limits  of  the  sum- 
mation in  the  following  cases  are  the  same  as  if  we  were 

about  to  calculate  an  area,  volume,  or  length.  The  bodies 
are  assumed  to  be  homogeneous  (of  uniform  density)  and 
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hence  weight  is  proportional  to  volume.     For  such  bodies 
the  centre  of  gravity  is   also   known  as  the  centroid. 

162.  An  area.  To  find  the  e.g.  of  a  thin  plate  or  lamina  * 
of  the  form  ABDC,  Fig.  61,  we  have  the  element  of  2iresi  =  ydx; 
element  of  weight  =  iy  .  y  dx,  where  ̂ (;  =  weight  per  unit  area; 
e.g.  of  element  at  {x  +  i,  \y),  where  i  is  infinitesimal;  hence 

element  of  moment  =  wy  dx  .  x  when  gravity  is  perpendicular 
to  the  a;-axis,  8ind  =  wy  dx .  \y  when  gravity  is  perpendicular 
to  the  i/-axis.  Dividing  the  sum-limit  of  the  moments  by 
that  of  the  weights  (§  160), 

xy  dx  \y'^dx 
^=7   ,y  =  '2-r   ' 

\y  dx  y  dx 

when  w  (which  is  assumed  to  be  constant)  is  cancelled. 
It  will  be  noticed  that  the  denominator = the  area. 

163.  A  solid  of  revolution  about  OX.  Element  of  vol- 

ume =  ny'^  dx,  of  weight  =  w  .  ny"^  dx,  w  being  the  weight  per 
unit  volume,  element  of  moment  =  w; .  ny^  dx  .  x, 

xy^  dx 

y^  dx 

=  0. 

The  denominator  =  volume/;:. 
164.  An  arc.     Proceeding  as  above  we  have  for  the  e.g. 

of  a  material  line  in  the  form  of  the  curve  CZ),t 

Ixds  y  ds 

x=- — ,    y-^-^ — . \  ds  \  ds 

*  Results  for  a  lamina  are  limits  for  a  uniform  and  infinitesimal 

tThe  results  are  limits  for  a  body  of  uniform  and  infinitesimal 
cross-section. 
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165.  A  surface  of  revolution  about  OX.     For  a  curved 
surface  of  this  form  and  of  infinitesimal  thickness, 

he?/  ds 

y  =  0. 

i' 

ds 

166.  An  area  in  polar  coordinates.  Element  of  area  = 

Jr^c?^  (§  147);  its  e.g.  is  distant  §r  +  t  from  the  origin;* 
hence  if  the  initial  line  is  taken  as  x-axis, 

x  = 

\w  .  ir2  dd  .  |r  cos  d       \r^ccs  d  dO 

_  2' 
[w  .  ir2  dd  [     r2  dd 

[r3  sin  0  dO and  ^=r 

[ 

^dd 

167.  The  subject  may  also  be  considered  from  the  point 

of  view  of  geometry  only.  Let  a  be  an  area-element  or 
volume-element  which  is  infinitesimal  in  every  direction, 
and  which  contains  a  point   (x,  y,  z).    Then  the  limits  of 

lax      lay     laz 

Ha  ̂      2  a '     Ha 

are  the  same  as  the  x,  ̂,  2  of  §  160  for  homogeneous  bodies, 

and  are  the  coordinates  of  a  point  which  is  called  the  cen- 
troid  (or  centre  of  gravity)  of  the  area  or  volume.  Or,  a 
may  be  taken  as  a  mass-element,  in  which  case  the  point 
is  called  the  centre  of  mass  (or  centre  of  gravity)  of  the  body. 

168.  Pappus's  (or  Guldin's)  properties  of  the  centre  of 

gravity.     From  §  164  we  have    2/rfs=^  ds,  and  multiplying 

both  sides  by  27:, 

*  The  c.e.  of  a  triangle  is  assumed  to  be  the  point  of  intersection 
of  the  medians. 
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\27:y.ds=ndsj  .27ty.  (1) 

Similarly  from  §  163, 

1 7:7/2  ̂a-  =  \\y  ̂̂   j  ^  27zy.  (2) 

These  results  are  equivalent  to  the  following  statements, 

which  are  known  as  Pappus's  or  Guldin's  Properties: 
(1)  The  surface  of  a  solid  of  revolution  is  equal  to  the 

length  of  the  revolving  curve  multiplied  by  the  length  of 

the  path  of  the  e.g.  of  the  curve  (i.e.  oj  the  arc). 

(2)  The  volume  of  a  solid  of  revolution  is  equal  to  the 

revolving  area  multiplied  by  the  length  of  the  path  of  the 

e.g.  of  this  area. 
N.B.  The  axis  of  revolution  may  touch  but  not  cut  the 

curve. 

Examples. 

1.  The  parabolic  area  OAB,  Fig.  74.        Ans.  x=lx^,y  =  ly^. 
Of  the  solid  of  revolution  round  OX,  x  =  ̂Xi. 

_    4a   _     46 
2.  The  quadrant  of  an  ellipse.  Ans.  x  =  ~-,  y  =  ~ 

3.  Half  of  a  prolate  spheroid.  Ans.  x  =  ̂a. 
4.  The  circle  x^  +  y^  =  2ax  between  x  =  0  and  x=^h  revolves 

about  the  axis  of  x,  find  the  e.g.  of  the  volume  of  the  spherical 

segment  thus  formed.  .        _  _  /8a  —  Sh\  h 

For  a  hemisphere  this  =  fa. 
Show  that  for  the  surface  of  the  segment  x  =  ̂h. 
5    A  circular  arc. 

Ans.  Distance  from  centre  of  circle  =  chord  X  radius/arc. 

For  a  quadrant  this  =  2  V2aA,   and   =2aA  for   a  semicircular 
arc. 

6.  A  circular  sector. 

Ans.  Distance  from  centre  =  |  chord  X radius/arc. 

For  a  quadrant  this  =  4\/2a/3;r  and  =  4a/37r  for  a  semicircle. 
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7.  A  circular  segment. 

Ans.  Distance  from  centre  =  chordV(12X  area  of  segment). 
8    Surface  and  volume  of  a  right  circular  cone. 

Ans.  Distance  from  vertex  =  (1)  ̂   axis,  (2)  f  axis. 
9.  The  area  between  the  curve  y  =  smx  (Fig.  65)  and  the  axis^ 

of  a;,  f rom  a;  =  0  to  a;  =  TT.  Ans.  x  =  ̂ 7:,  y  =  \7:. 
10.  The  cycloid,  Fig.  19.  Ans.  Distance  from  base  =  |a. 
11.  A  quadrant  of  the  curve  xi  +  yi  =  ai  (Fig.  18). 

Ans.  x  =  25Qa/3157:  =  y. 

Of  the  arc,  x  =  la  =  y. 

12.  A  quadrant  of  the  whole  area  of  the  curve  a^y^  =  x^{a'^—x^), 
(Fig.  69).  Ans.  x  =  ̂ na,  y  =  la. 

13.  The  area  between  the  curve  y^{a^—x^)  =  a^  and  the  asymp- 
tote a:  =  a.  Ans.  x  =  2a/7:,  y  =  0. 

14.  Find  by  Pappus's  Properties  the  surface  and  volume  of  a 
torus  (or  anchor  ring),  formed  by  the  revolution  of  a  circle  of 
radius  a  when  the  centre  describes  a  circle  of  radius  b,  b>  a. 

Ans.  4:7:^ab,  2;r'a'6. 
15.  Find  by  Pappus's  Properties  the  e.g.  of  the  arc  of  a  semi- 

circle and  that  of  the  area  of  a  semicircle. 



CHAPTER  XXXIV. 

MOMENTS  OF  INERTIA. 

169.  The  Moment  of  Inertia  is  a  quantity  which  is  often 
required  in  connection  with  the  motion  of  a  body  about  an 
axis.     The  following  is  an  illustration. 

170.  Kinetic  energy  of  rotation.  Let  it  be  required 
to  find  the  kinetic  energy  which  a  body  possesses  on  account 
of  its  rotation  about  an  axis. 

Let  the  perpendicular  distance  of  a  particle  of  mass  mi 
from  the  axis  be  ri  and  let  a>  =  the  angular  velocity  of  the 

body  about  the  axis.  Then  the  kinetic  energy  of  the  par- 
ticle 

=  i  (mass)  X<linear  velocity)^  =  Jmi  {ojri)^  =  icu^miri^, 

and  the  whole  kinetic  energy  of  the  body, 

where  / = rriiri^ + m^T'?  + .  .  . 
The  quantity  /  is  called  the  moment  of  inertia  of  the 

body  about,  or  with  reference  to,  the  axis;  hence  the  fol- 
lowing definition: 

The  Moment  0}  Inertia  of  a  body  about  an  axis  is  the  sum 

of  the  products  obtained  by  multiplying  the  mass  of  each 

particle  of  the  body  by  the  square  of  its  distance  from  the 
axis. 

181 
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Since  the  particles  of  a  body  are  infinitesimal  portions 
of  the  body;  the  moment  of  inertia  is  obtained  as  follows: 

Imagine  the  body  to  be  divided  into  parts  which  are  infini- 
tesimal in  every  direction,  and  find  the  limit  of  the  sum 

of  the  products  of  the  mass  of  each  part  by  the  square  of 
the  distance  of  some  point  in  it  from  the  given  axis. 

Since  both  factors  of  the  product  mr^  are  essentially  + , 
the  moment  of  inertia  is  always  +,  and  the  moment  of 

inertia  of  a  body  about  any  axis  is  always  equal  to  the  arith- 
metical sum  of  the  moments  of  inertia  of  its  parts  about 

that  axis. 

171.  Prop.     The  m.i.  of  a  body  about  any  axis  =  them.i. 

about  a  parallel  axis  through  the  centre  of  gravity +M/i2, 
where  M  is  the  mass  of  the  body  and 
h  is  the  distance  between  the  parallel 
axes. 

Take  at  a  point  P  in  the  body  a 
particle  of  mass  mi.  Let  a  plane 
through  P  perpendicular  to  the  axes 
in  question  meet  the  one  through 

the  centre  of  gravity  G  in  G'  and  the 
^''''-  ̂ ^'''  parallel   one    in  H',     then    G'H'  =  h. 

Draw  PK  perpendicular  to  G'H'  and  let  G'K  =  Xi.    Then 

si^  =  ri2+h^-2hxi  (Euc.  II.  13), 

.*.  miSi^  =  miri^-{-mih^—2hmiXi. 

Similarly  for  particles  m2,  1713,  etc. 

/.miSi^-\-m2S2^-\-...=  imiri^+m2r2^  +  . .  .)-\-h^(mi+m2  +  . . .) 

—  2h(miXi-\-7n2X2  +  .  .  .  )• 

The  left-hand  side  =  the  m.i.  about  the  axis  through  //; 
and  of  the  three  terms  on  the  right,  the  first  =  the  m.i.  about 
the  parallel  axis  through  the  centre  of  gravity,  the  second  = 
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Mh^,  and  the  third  =  0  (§  160),  since  the  centre  of  gravity- 
is  in  the  Une  from  which  Xi,  X2,  .  .  .^are  measured. 

172.  The  proposition  just  proved  is  true  for  all  bodies, 

but  the  following  applies  only  to  laminae.^ 
Prop.     Let  X'X,  Y'Y  be  two  lines  in  the  plane  of  a  lamina 

and  meeting  at  right  angles  in  0,  and  let  Z'Z  be  a  line  through 
0  perpendicular  to  the  plane. 

Let  /i  =  the  m.i.  of  the  lamina 

about    X'X,    /2  =  that    about 

Y'Y,  /  =  that  about  Z'Z;  then 

/  =  /i+/2. 

.'.  miri^  =  miXi^-\-miyi^. 

The  proposition  is  therefore 
true  for  a  particle  at  P,  and  hence  it  is  true  for  all  the 

particles  of  the  lamina. 

173.  When  the  m.i,  is  put  into  the  form  Mk^  (M  being 
the  mass),  k  is  called  the  radius  of  gyration;  hence  the  radius 

of  gyration  of  a  body  with  reference  to  an  axis  is  the  dis- 
tance from  the  axis  of  a  point  at  which  a  particle  having 

the  same  mass  as  that  of  the  body  may  be  placed  so  that 

its  m.i.  may  be  the  same  as  that  of  the  body. 

If  k  =  the  radius  of  gyration  with  reference  to  an  axis 

passing  through  the  centre  of  gravity,  and  ki  that  about  a 

parallel  axis  at  a  distance  h,  we  have  ki^  =  k^  +  h^,  since 
(§  171) 

Mki^  =  Mk^-\-Mh^. 

174.  In  the  following  examples  the  density,  i.e.,  the  mass 

per  unit  volume,  is  represented  by  fx,  and  the  bodies  are 

assumed  to  be  homogeneous,  i.e.,  of  uniform  density,  unless 
the  contrary  is  specified. 
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Ex.  1.  To  find  the  m.i.  of  a  rectangular  lamina  whose  sides  are 
a,  a,  b,  b,  about  an  axis  bisecting  the 
sides  a,  a,  Fig.  104. 

Divide  the  rectangle  into  parallel 
strips  of  length  b  and  width  dx,  and 
measure  x  from  the  axis.  The  elements 

are  as'  follows:  area,  =  b dx,  volume  = 
t .  b  dx,  where  t  =  the  thickness  of  the 

lamina,  mass  =  fi.tb dx,  m.i.  =  fxtb dx . x^, 
since  every  particle  is  at  a  distance 

x  +  i  from  the  axis,  i  being  infinitesimal.  Integrating  between 
0  and  ̂ a  and  doubling  we  have  for  the  m.i.  of  the  whole  rectangle 

Fig.  104. 

Jo 
2      /itbx^  dx  =  i^iitba^  =  {fitab) 12 

The  quantity  in  parentheses  is  the  whole  mass  (  = /^  X  volume), 
a'  « 

/.  the  m.i.  =m— ,  and  hence  the  radius  of  gyration  =  -,—  .    Simi- 
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2.  The  m.i.  of  the  rectangle  about  a  normal  axis  through  the 

a^  +  b^ intersection  of  the  two  axes  of  Ex.  1  is  §  (172)  m — — — 

The  same  formula  is  true  for  any  parallelogram  (of  which  a  and 
b  are  adjacent  sides)  about  an  axis  drawn  as  in  this  case  through 
the  intersection  of  the  diagonals  at  right  angles  to  the  plane. 

3.  The  m.i.  of  the  rectangle  about 
a  side  6  is  (§  171), 

4.  The  m.i.  of  the  rectangle  about  a 

normal    axis    through    one    angle  = I 
Fig.  105. 

5.  Any  triangular  lamina  (Fig.  105)  about  one  side  BC.     Let 

BC  =  a,    the    perpendicular    OA=h.       Then   DE:BC::FA:OA, 
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.-.  DE/a  =  {h-x)/h,  :.  DE={h-x)a/h. 

.  .  m.i.  = 

Jo 

ha  ^2 

/i{h  —  x)—  .t.dx.  x'^  =  m~. h  o 

6.  A  circular  lamina  of  radius  r  about  a  normal  axis  through 
the  centre. 

Consider  the  annulus  between  the  concentric  circles  of  radii 

X  and  x  +dx.  The  elements  are :  area  =  27zx  .  dx,  mass  =  fit .  27ra:  dx, 

m.i.  =  fit .  2;ra:  dx  .  x^,  since  every  particle  of  the  annulus  i»  at 
a  distance  x+i  from  the  axis,  i  being  infinitesimal, 

.'.  whole  m.i  =     2fi7:tx^  dx  =  if^7ztr*=m— J  o  Z 

7.  A  circular  lamina  about  a  diameter. 

Let  the  required  m.i.  =7.  The  sum  of  the  moments  of  inertia 
about  two  diameters  at  right  angles  to  each  other  =  27;    it  also 

(by  §  172  and  Ex.  6)  =  m^,  .'.  7  =  m^. 
8.  A  circular  lamina  about  a  normal  axis  through  the  centre 

when  the  density  is  supposed  to  vary  inversely  as  the  distance 
from  the  centre. 

Let  n  =  k/x,  where  /b  is  a  constant.     Then  m.i. 

But  the  mass  m  = 

x"^    v^ 
9.  An  elhpse  —  +7;  =  1  about  its  minor  axis. 

Ca 

The  m.i.  =  4     fi  ,y  dx  .t  .x^.     Substitute  y  from  the  equation  of 
Jo 
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10.  A  sphere  about  a  diameter. 

Take  the  diameter  as  x-axis  and  the  centre  as  origin. 
Consider  the  sphere  to  be  made  up  of  laminae  perpendicular  to 

the  axis,  and  of  thickness  dx     Then  m.i.  (see  Ex.  6) 

i"- 
7cy^  .dx  .-2     and     y^  =  r'^  -x"^,     whence  the  m.i.  =  mf  r^ 

11.  A  right  circular  cylinder  of  radius  r  about  its  geometrical 
axis. 

The  cylinder  may  be  considered  as  made  up  of  circular  laminae 

y.
2 

perpendicular  to  the  axis,  hence'  (Ex.  6)  the  m.i.=m— . 

£1 

Similarly  for  a  cube,  a  right  prism,  etc.,  about  an  edge  or  any 
parallel  axis. 

12.  A  right  circular  cylinder  of  radius  r  and  length  I  about 
an  axis  bisecting  at  right  angles  the  geometrical  axis. 

As  before,  suppose  the  cylinder  to  be  made  up  of  circular 
laminae.  The  mass  of  the  lamina  at  a  distance  x  from  the  axis 

^ti.nr"^  dx,  and  its  m.i.  about  a  diameter  in  its  own  plane  and 

parallel  to  the  given  axis  =  mass  X-   (Ex.  7),    .*.  its  m.i.  about 

the  given  axis  =  mass(  —  +a;M  (§  171); 

.*.  whole  m.i.  =  2      f^^^^  dx  {  —  +x^)  =ml  —  +—). 

175.  As  in  Ch.  XXXIII,  the  subject  may  be  considered 

from  the  point  of  view  of  geometry  alone.  If  a  is  an  area 

(or  volume)  element  which  is  infinitesimal  in  every  direc- 
tion, and  r  the  perpendicular  distance  of  some  point  in  it 

from  a  straight  line,  the  limit  of  lar'^  is  called  the  moment 
of  inertia  of  the  area  (or  volume)  with  reference  to  the  straight 

line.  The  results  are  the  sahie  as  those  calculated  for  homo- 

geneous bodies,  area  (or  volume)  taking  the  place  of  mass. 
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Examples. 

Find  the  moment  of  inertia  of 

1.  A  triangle  about  (1)  an  axis  through  the  centre  of  gravity 
parallel  to  the  base,  (2)  a  parallel  axis  through  the  vertex. W'  }? 

Ans.  (1)  Wjg,     (2)  W-. 

2.  A  rectangle  (a  by  6)  about  a  diagonal.     Ans.  m^rr^ — r^. 

3.  An  isosceles  triangle  about  a  normal  axis  through  the  middle 

point  of  the  base.  .  4  alt.^  +base^ 
An8.  m   —   •. 

24 

4.  An  isosceles  triangle  about  a  normal  axis  through  the  vertex. 

12alt.2+base2 Ans.  m-   . 24 

5.  A  circular  annulus  of  radii  R,  r  about  a  normal  axis  through 
the  centre.  .  R^ +r^ 

Ans.  m   . 2 

R^ +1^   ■ 
6.  A  circular  annulus  about  a  diameter.  Ans.  m — ; — . 4 

7.  A  circle  about  a  tangent.  Ans.  m^r^. 
8.  A  circular  arc  of  length  s,  radius  r,  and  chord  c,  about  an 

axis  through  its  middle  point  perpendicular  to  its  plane. 

Ans.  w.2rMl--y 

9.  A   circle  about  a  normal  axis  through  a  point  in  the  cir- 

cumference. Ans.  mlr^. 

10.  A  parabolic  area,  Fig.  74,  about  the  a;-axis.       Ans.  m-^ 

11.  The  same  about  the  t/-axis.  Ans.  m^x^. 
12.  A  spherical  shell  of  infinitesimal  thickness  about  a  diameter. 

Ans.  m^r^. 13.  A  right  circular  cone  of  radius  r  and  altitude  h  about  its 

geometrical  axis.  Ans.  m-^^r^. 
14.  The  same  about  an  axis  through  the  vertex  perpendicular 

to  the  geometrical  axis.  Ans.      12h^  +Si^ 

'^       20 
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15.  The  same  about  an  axis  through  the  centre  of  gravity  per- 
pendicular to  the  geometrical  axis.  ,  Sh^  +  12r An,.  »t-go— . 

16.  An  oblate  spheroid  about  its  geometrical  axis. Ans.  m^d? 

17   Any  area  ABDC  (Fig.  61)  about  the  a:-axis. 

\fdx 

A  ̂       J 

''  3  7 — • 
\ydx 18.  The  hypocycloid  x^+ifi^a^  (Fig.  18)  about  the  a;-axis. Ans.  rn^o? 



CHAPTER  XXXV. 

SUCCESSIVE  INTEGRATION. 

176.  Successive  integration.  Let  T  be  a  function  of  u, 

V,  and  w,  and  suppose  the  following  operation  to  be  per- 
formed: T  dw  is  integrated  between  the  limits  wi  and  W2, 

u  and  V  being  treated  as  constants;  the  result  is  mul- 

tiplied by  dv  and  integrated  between  -yi  and  V2,  u  being 
treated  as  a  constant;  the  result  is  multiplied  by  du  and 
integrated  between  ui  and  U2.  The  whole  operation  is 
indicated  by  the  notation 

CU2  rv2  rw2 

J  UiJ  ViJ  Wi 

T  du  dv  dw. 

The  limits  of  w  may  be  functions  of  u  and  v,  the  limits 
of  V  may  be  functions  of  u,  but  the  limits  of  u  are  constants. 
Instead  of  three  variables  there  may  be  two  or  four,  or  more. 

Ex.  1.  x^y  dx  c??/=      (     x^y  dyj  dx=     ̂ x*  dx  =  3T\ 
■y^)dx  dy 

3. 

3  Cx  Cx+y  1*3  rx 
{x-y)dxdy  dz=         (x^ oJ  oj  0  J  oJ  0 

3 

^x^  dx 
.  0 2r3 

1: 
13i. 

2r3 

Qx^ydxdy  =  S5 1J2 

1*2  r2x  rx+ij 
t.  dxdydz  =  9h 

5. 

'n  rat 

ojo rdddr=^i7c'a\ 189 
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Jo  Jo  Jo 

2a  cos  e 

r^  sin  d  cos  6  d(ji  dO  dr  =  \Tza*. 

Applications  of  Successive  Integration. 

177.  Plane  area.    Rectangular  coordinates.    Let  P  be  the 

point  {x,  y),  and  let  PR,  PS  be  dx,  dij,  infinitesimal  incre- 
ments of  X  and  y.  The 

rectsingh  PQ=dx  dy  may  be 
taken  as  an  element  of  area. 
To  illustrate  the  method  of 

finding  the  limit  of  the  sum 

of  such  elements  by.  succes- 
sive integration,  let  it  be  re- 

quired to  find  the  area  of  the 
figure  KM,  which  is  bounded 

by  the  lines  x=a,  x=h,  and 
^  the  two  curves  KL  or  y=f{x) 

and  NM  or  y=F{x). 
'CO     V  rb 

dy)  dx=EG.  dx,        (2)      EG  .  dx  =  KM. 
CE      '  J  a 

The  first  result  is  the  sum  of  such  rectangles  as  PQ,  which 
make  up   the  rectangle  EFI,  which  is  equivalent  (§  15)  to 
the  strip  EIJG  of  the  given  figure,  the  second  is  the  sum  of 
such  strips  for  the  whole  area.     The  final  result  is  the  limit 
of  the  sum  of  such  rectangles  as  PQ  when  both  dx  and  dy  =  0. 

The  whole  operation  is  indicated  by  the  "double  integral" 
Cb  rv2  rb  rF(x) 
\     \    dx  dy    or     \     \       dx  dy, 
Ja  Jvi  '  JaJ  fix) 

2/1  and  2/2  being  the  y'a  of  the  curves  y=f{x),  y=F(x). 
More  generally,  let  w  be  a  function  of  x  or  ?/,  or  of  both  x 

and  y.  The  limit  of  the  sum  of  such  products  sj&udx  dy 
taken  for  all  parts  of  the  area  KM  is 

(1) 

(i: 

I  U dxdy. 
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Ex.  1.  Find  £1  y  dx  dij  for  a  quadrant  of  the  circle  x^  +  y^  =  a^. 

We  are  to  obtain        \    y  dx  dy,  where  y^  is  the  y  of  x^  +  y'^  =  a'^, Jo  Jo 

fa   fJ/i  fa  /  Cyi  \  fa  fa 

ydxdy=\    M    2/c??/j(^a;=      i?yi2c?x=      i(a2_a:2)rfa;=i«3. 

This  is  the  moment  of  the  area  with  reference  to  the  a:-axis. 

2.  Find  £^  y"^  dxdy  for  the  same  area. 

Jo  Jo dxdy  =  ̂ na*. 

This  is  the  second  moment,  or  moment  of  inertia,  of  the  area 
with  reference  to  the  x-axis. 

3.  Find  £1  xy  dx  dy  for  the  same  area.  Ans.  ̂ a*. 
This  is  the  product  of  inertia  of  the  area  with  reference  to  the 

axes. 
4.  Show  that  the  volume  of  a  soHd  of  revolution  about  the 

a;-axis  is 

27:    h/  c?a:  dy, 

and  deduce  the  formula  of  §  95. 

178.    Plane    area.     Polar    coordinates.      Let   P  be   the 

point   {d,  r),   and  let  POR=dd,  PS  =  dr.      With  centre  0 
describe  the  arcs  PR,  SQ.    Then 
the  element  of  area  PQ 

=  i{r  +  dr)^dd-hr^dd 

=  rdddr  +  ldr^dd, 

the    last    term    being    a    higher 
infinitesimal. 

.-.  £2  PQ=£Irdddr. 

Let  KLMN  be  a  figure  bounded 

by  the  lines  6  =  a,  6  =  1^,  and  the    o 
rurvesKL  or  r=j{d)  and  ATM  or  Fig,  107. 
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r=F{d).     Proceeding  as  in  §  177  we  find  the  area 

rdddr,     or  rdddr, JaJ  KO) 

ri  and  r2  being  the  r's  of  the  given  curves. 
The  first  integral  \{r'^—ri^)dd  =  EGJF,  which  is  equivalent 

to  the  sectorial  strip  EGHI  of  the  given  figure;  the  second 
is  the  sum  of  such  strips  for  the  whole  area.  The  final 

result  is  the  limit  of  the  sum  of  such  figures  as  PQ  when 
both  dd  and  dr  =  0. 

Observe  that  the  element  r  dd  dr=PR  .  PS  as  in  Fig.  106. 

Ex.  1.  The  area  (Fig.  108)  between  the  circles  r  =  2acos0, 
r  =  2b  cos  0,  (6>a),  is >p  r 

Jo    J  2a 

26  cos 

rd0dr  =  7:(b'-a') 

2.  Find  the  area  (Fig.  109)  bounded  by  the  curves  ̂   =  r'-f-r, 
'==r^-r  r  =  l. 

Fig.  108 Fig.  109. 

[Integrate  first  with  regard  to  0.]  Ans.  §. 
3.  The  moment  of  inertia  of  the  circle  r  =  2a  cos  6  with  refer- 

ence to  a  normal  axis  through  the  polar  origin 

Jo  Jo 

cos  d 

r^d0dr  =  l7:a\ 

4.  Find  the  moment  of  inertia  of  the  lemniscate  r'^  =  a^  cos  20 
(Fig.  27)  with  reference  to  a  normal  axis  through  the  origin. 

Ana.  J;ra^. 
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5.  The  potential  of  a  particle  of  mass  m  at  distance  R  being 
m/R,  show  that  the  potential  of  a  lamina  (thickness  t,  density  n) 
at  a  point  B  on  the  perpendicular  to  the  lamina  through  the  polar 
origin  0  {OB  =  c)  is 

tr  dd  dr 

11^^ 
Vc'^  +  r^' (1)  Find  the  potential  at  B  if  the  lamina  is  the  circle  r  =  a. 

Ans.  27:fitiVc^Ta}-c). 
(2)  Find  the  potential  of  a  circular  lamina  at  a  point  in  the 

circumference.  Ans.  ia/^t. 
6.  If  a  curve  revolve  about  the  initial  line  show  that  the  volume 

=  2;: r^  sin  6  dd  dr. 

Find  this  volume  for  a  complete  revolution  of  the  cardioid 

r  =  a  cos^^,  Fig.  89.  Ans.  ̂ naK 
7.  Find  the  moment  of  inertia  of  an  anchor-ring  (see  Ex.  14, 

p.  180)  about  its  axis. 
Take  as  origin  the  centre  of  the  circle  (radius  a)  to  be  revolved, 

and  the  perpendicular   (length  b)  on  the  axis  of  revolution  as 

initialline.     Them.i=2         iJt.27:(b— r  cos  6)  .rdddr  .{b—r  cos  6)^ 
JoJo 

Ans.  m(|a^  +  6^). 

179.  Volume  of  a  solid.     Rectangular  coordinates.    LetP 

be  the  point  {x,y,z)  and  let  PR,  PS,  PT  be  dx,  dy,  dz,  infinitesi- 
mal increments  of  x,  y,  and  z.  The  parallelepiped  PQ  =  dx  dy  dz 

is  taken  as  the  element  of  volume,  the  limit  of  the  sum  of 

such  elements  being  obtained  by  successive  integration. 
Thus  to  find  the  volume  of  the  solid,  Fig.  110,  bounded  by 

the  coordinate  planes  and  a  surface  whose  equation  is  given : •lu    , 

dx  dy=IU.  dxdy, 
.(1)   {I  dz) 

(2)  (['     W.dy)dx=VDG.dXy 
rOA 

(3)  1 
Jo 

the  required  volume, 

OA 
VDG.dx  =  COBA, 

0 
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The  first  result  is  equivalent  to  the  column  standing  on 

IK{  =  dxdy),  the  second  to  the  slice  between  VDG  and  WEF 
and  therefore  of  thickness  dx,  the  third  is  the  sum  of  such 
slices. 

Fig    110. 

The  whole  operation  js  indicated  by  the  ''triple  integral" 

^2l 

J  oJ  0  J  0 

dx  dy  dz, 

where  Zi  is  the  z  of  the  given  surface,  2/1  is  the  y  of  the  curve 

AGB  in  which  the  surface  is  cut  by  the  plane  2=0,  and  a  =  0^. 

Ex.  1.  To  find  the  volume  of  the  ellipsoid  —  +  ,,+-  =  1. ^  /t2        ;,2         ̂ 2 

x' 

raCyiCzi  -pl      y2      ̂ 2 

\    dx  dy  dz,  where  Zi  is  the  z  of -^+7-2+-^  =  1,   and 
JoJoJo  la      0      c 2  y2 

2/,  is  theyof  — +7y  =  l,  i.e 

b  c 
i/,=-(a'-x2)i    and    Zi  =  -r{yi^-y^)^, 0/  0 
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Since  dz  =  z 

Jo fa    [y\  [a    CVir-  C  I 

Tcabc 

'.  V  =  i7zabc. 

Zi  dx  dy  is  equivalent  to  a  column,      yi^  dx  to  a  slice,  and  — -—  is 4o  6 

the  sum  of  the  slices  for  an  octant. 

2.  Find  £I/i{y^  +  z^)dx  dy  dz  for  an  ellipsoid,  i.e.,  the  moment 
of  inertia  with  reference  to  the  x-axis. 

Ca  1*2/1  f«i  ra  Cyi 
8  fi{y''  +  z^)dxdydz  =  Sn\        {yhi  +  W)dxdy JoJoJo  JoJo 

''^^(62  +  c=')[V^^  =  A^a^c//(62  +  c2)=m^ 
26 

3.  Find  the  volume  of  the  hyperbolic  paraboloid  az  =  x'^  —  y^  in 
the  first  octant,  x  varying  from  0  to  h. 

mdxdyd
z  =  ---. 0  6a 

4.  Find  the  volume  of  x^—y^  =  x^z^  in  the  first  octant,  x  varying 
from  0  to  h.  Ans.  ̂ nh^ 

5.  In  Ex.  3  find  the  moment  of  inertia  with  reference  to  the 

2-axis.  -4ns.  mih^ 
6.  A  rectangular  parallelepiped  which  has  its  base  in  the  xy- 

plane  and  its  sides  parallel  to  the  other  coordinate  planes, 
intersects  the  hyperbolic  paraboloid  az  =  xy.  Show  that  the 
enclosed  volume  =  base  X  mean  length  of  the  vertical  edges. 

7.  Find  £1  xy  dx  dy  dz  and  £1  xyz  dx  dy  dz  for  the  octant  of 

aneUipsoid.  ^^_    ̂ ^^  _a|£.^     (2^  |W 
8.  Find  the  volume  enclosed  in  the  first  octant  by  the  ccor- 

dinate  planes  and  the  surface  (— j    +  (-^j    +  (— j    =  1. 
.        ahc 

Am.  g^. 
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i8o.  Volumes.  Polar  coordinates.  Let  0  be  the  origin, 

OA  the  initial  Hne,  BAOC  the  initial  plane.  A  plane  re- 
volving through  the  angle  ̂  

about  OA  from  the  initial  plane 

contains  a  point  P,  OP  =  r  mak- 
ing an  angle  0  with  OA.  The 

polar  coordinates  of  P  are  (j),  d, 

r;  r  and  6  are  the  ordinary- 
polar  coordinates  of  plane 

geometry,  and  (§  178)  PM  = 
r  dd  dr  +  Ii,  where  h  is  a  higher 
infinitesimal.  The  increment 

d^  brings  P  to  T  and  PM 
to  TQ,PT  =  PAd^  =  rsmdd(l). 

^^'       '  Hence  the  element  of  volume  PQ 

=  (r  dd  dr+Ii){r  sin  6  d^-{-l2)  =  r^  sin  0  dcj)  dO  dr+I^. 

.-.  V={{{r2smOd<j>dddr. 

(The  element  is,  as  in  Fig.  110,  PR.PS  .  PT^ 

Ex.  1.  Volume  of  a  sphere.     (1)  The  origin  being  the  centre, 
'2n  C^  Co- 
C2n  (^  Ca 

V=\     \    \  r^  sm  0  d<t>  do  dr J  0  J  oj  0 
r2n  rn  C2r: 

=  ia»sin  Od^dO=       §a Jo  Jo  Jo 
'dcl>  =  i7:a\ 

The  first  integral  ̂ a'  sin  0  d<l>dd  =  si  p3rramid  with  vertex  at  the 
centre  and  base  on  the  surface  of  the  sphere,  the  second  ̂ a^d^  =  a 
wedge  of  which  the  angle  is  d^  and  the  edge  a  diameter  of  the 

sphere,  the  third  f7ra^  =  the  sum  of  the  wedgea 
(2)  If  the  origin  is  on  the  surface,  and  the  initial  line  a  diameter, 

Jo  JoJo 

2a  co.s  d 

r'  sin  6  d<f>  dd  dr. 

i 
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(3)  If  the  origin  is  a  point  on  the  surface,  the  initial  line  a  tan- 
gent, and  the  initial  plane  passes  through  the  centre, 

"2"  f2^  ,*2asin(?  COS/? 
r'  sin  0  d^  dd  dr. 

=4ppr 
Jo  Jo  Jo 

2.  The  vertex  of  a  cone  of  vertical  angle  2a  is  on  the  surface  of 
a  sphere  of  radius  a,  and  its  axis  passes  through  the  centre  of 

the  sphere.     Find  the  common  volume.        Ans.  |;ra3(l-cos*a). 
3.  The  moment  of  inertia  of  a  sphere  about  a  diameter 

=  2|  ''  I  ^  \  (ir^  ̂ m^d  d4>  dd  dr=m  Wy JO  Jo   JO 

and  about  a  tangent  line 

C  2     r  2    r^o  sin  d  COS  (f> 
=  4  /ir^  sin^ 6  d(f>  do  dr=mia^. Jo  JO  Jo 

4.  The  potential  of  a  solid  sphere  (density  n)  at  a  point  on  the 

r2ff    r~2  r2a  cos  d  fYi 
surface=  fxr  sin  6  d(/>  dd  dr  =  ifjt7ca^  =—. Jo   Jo  JO a 

5.  To  find  the  potential  F  of  a  spherical  shell  of  infinitesimal 
thickness  (radius  r,  thickness  t,  density  p.)  at  any  point  A. 

Take  0,  the  centre  of  the  sphere,  as  origin,  OA  as  initial  line, 
and  let  0^  =  c.    Then 

r2K  rn  ̂ ^2  sin  6  d(l>  dd  .t       ,  .  ,     , 
V=\  ,  where  r  is  constant. 

Jo   JoVc^  +  r^— 2cr  cos  ̂  

•       /.  7=-^^[(c  +  r)-(c-r)],    c>r, c 

2TzfirL,        .      ,        .^ 
and  =   [(r  +  c)-(r-c)],     c<r, c 

.  .  V  =  — '■ —  =  —  for  A  outside  the  sphere, c  c 

and  —  ̂Tipirt  =  —  for  A  inside  the  sphere, r 
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In  the  former  case  the  potential  is  the  same  as  if  the  whole 
mass  were  at  the  centre  of  the  sphere,  in  the  latter  it  is  inde- 

pendent of  c,  and  therefore  the  same  at  all  points  inside  the  sphere 
6.  To  find  the  potential  of  a  homogeneous  solid  sphere  (radius  a) 

at  any  point  A. 
Consider  the  sphere  as  made  up  of  concentric  shells  of  infini- 

tesimal thickness  t  =  dr.    Then  from  Ex.  5, 

y= —     r^dr=i^——=—j    A  outside, 

c  Jo  6     c        c'  ' 

and 
4;r/f re  Ca 

r^dr  +  Arcfil  r  dr^27:ii{a} -\c^),     A  inside. 

if  the  base  is  in  the  xiz-plane.     Instead  of  dx  dy  for  the  base 
of  the  column  of  height  z  we 

may  take  the  polar  element  of 

area  r  d<j)  dr.    Then 

i8i.  Volume.     Mixed  coordinates.     A  volume 

=     0r  rf0 
dr. 

Fig.  112. 

Ex  1.  For    the    volume    of    a 

sphere  by  this  method, 

W=[  ̂  ["  "^d^^^  r  d4>  dr Jo  Jo 

Jo 

The  first  inetgral  ̂ a'  rf<^  is  a  wedge  whose  edge  is  OZ  and  angle 
di>,  the  second  is  the  sum  of  such  wedges  for  a  hemisphere. 

2.  The  axis  of  a  right  circular  cylinder  of  radius  b  passes  through 
the  centre  of  a  sphere  of  radius  a{>  b).     Find  the  common  volume. 

2\  "{  Va'-r'rd<l>dr  =  l7:[a'- {a' - b')i]. 



181.]  SUCCESSIVE  INTEGRATION.  199 

3.  A  right  circular  cylinder  of  diameter  a  penetrates  a  sphere 
of  radius  a,  the  centre  of  the  sphere  being  on  the  surface  of  the 
cylinder.     Find  the  common  volume. 

Jo  fa  COS  ̂         Va'-r'rd^
dr=l{37:-

4:)aK 

0  Jo 

4.  The  axes  of  two  equal  right  circular  cylinders  of  radius  a 
intersect  at  right  angles.     Find  the  common  volume. 

JL  — 

8[^[Va^-r'sin^c^rc/0rfr  =  |a3f'(^~.^fJ^ 
n 

^fa^ftan  l  +  sin  ̂ J  ̂  =-Va\ 

5.  The  volume  between  the  surface  z  -  e-(^^  +  ̂^)  and  its  asymp- 
totic plane  z  =  0. 

This  is  a  surface  of  revolution  about  the  2:-axis 

r2;rf00 
(1)  F=  zrd(f>dr,    and    x^  +  y'  =  r\ 

Jo  Jo* 

,'.V  =  27t{   re-r'dr  =  27t[ -^e-^'l    =;:. 
Jo  ^  -"o  . 

/•OO    /-OO  1*00    1*00 

(2)  Also   F  =  4  zdxdy  =  4\         €r=^\  e-v'dx dy JO  Jo  Jo  Jo 

/•OO  j-cx)  /  r*         \  * 

=  4      e-y'dy.l    e-^'dx*  =  4:n    e-^Hx)  . 

.-.  From  (1)  and  (2),     C e-^'dx  =  -^'     (Of.  §  124.) 

*  If  the  integration  limits  of  each  variable  are  independent  of  the 
other  we  evidently  have 

Jff(x)Fiy)dxdy  =  ff{x)dx.  fF{y)dy. 
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182.  Area  of  any  surface.  Let  the  parallelepiped,  Fig.  42, 

which  has  the  base  dx  dy  in  the  a:?/-plane  and  its  sides  parallel 
to  the  2-axis,  intersect  the  tangent  plane  at  P{x,  y,  z)  and 
the  surface  in  sections  of  area  At  and  Ag,  respectively,  which 
are  assumed  to  be  equivalent  infinitesimals.  Let  a,  p,  y 
be  the  direction  angles  of  the  normal  at  P.     Then 

dxdy  =  AtCO^Y,     .*.  Ag==^QG  y  dxdy-\-I, 

where  /  is  a  higher  infinitesimal.     Hence  the  surface  S 

=     sec  /-  dx  dy=     sec  ady  dz=     sec  /?  dz 
dx. 

cos  a,  cos  /?,  cos  ;-  are  proportional  (§  63)  to  ̂ ,    ̂ ,   ̂   if 
dz 

u=c  \s  the  equation  of  the  surface,  and  hence  to  1,  —  ̂ ^-, ox 

dz 
——if  the  equation  is  in  the  form  z=f(x,  y).    Hence 

sec  ;-= 
4&<sy*&) du 

dz 

or -sRiiMlF- 
Ex.  1  A  right  circular  cylinder  of  diameter  a  penetrates  a 

sphere  of  radius  a,  the  centre  of  the  sphere  being  on  the  surface 
of  the  cylinder.  Find  the  surface  of  the  sphere  which  is  inside 
the  cylinder. 

Let  the  equations  be  x'  +  ?/'  +  2'  =  a'  (l),  x^+y^  =  ax  (2). 

For(l)  seer  =  7  =  77-      ,      .- 
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JoJo  va2-x2-2/2        Jo         N«+a; 

=  4a    (x  +  a)sin-i^^^-\/^  l''=2(7:-2)a2. 

2.  In  Ex.  1  find  the  volume  of  the  cylinder  which  is  inside  the 
sphere. 

For   (2),  sec/?  =  ̂  =  ̂     .^ —  ,   and   (1)  and   (2)  intersect  in y     2Vax-x^ 

S  =  4:\  ~,  =2a     A-dx  =  ̂a^, 
Jo  Jo  2Vaa:-a:2         JoN^ 

3.  The  axes  of  two  equal  right  circular  cylinders  of  radius  a 
intersect  at  right  angles.  Find  the  cylindrical  surface  enclosed. 

Let  the  equations  be  x'^-^z^  =  a'^,  y'^+z^  =  a?.  Ans.  16a^ 

*  Let  a;/(a+a;)  ==sin2^. 



CHAPTER  XXXVi. 

MEAN  VALUES. 

183.  Let  the  base  h—a  of  the  curve,  Fig.  113,  be  divided 
into  n  equal  parts,  at  the  extremities  of  which  ordinates 

2/1,  ?/2,  •  .  .  are    drawn.       The 
limit  of 

yi+y2+  ' '  •  +yn 
n 

for  n  infinite  is  called  the 

mean  value  of  y  for  the  in- 
terval a  to  6  of  X.  If  dx  =  the 

length  of  the  equal  segments 

of  h—a,  n={h—a)/dx.  Hence 

Y 

/] 
^ 
N 0 

D 

-0^ 

A B    X ' 

Fig.  113. 

the  mean  value  of  y  is 

£^y: 
dx 

\  ydx 
(1) 

Since  the  numerator  =  the  area  A  BCD,  the  mean  ordinate 
is  equal  to  the  height  of  a  rectangle  which  has  the  same 
base  and  area  as  the  given  figure. 

The  result  (1)  may  be  regarded  as  the  mean  value,  for 
the  interval  a  to  6  of  the  variable,  of  any  function  which  is 

single-valued  and  continuous  for  that  interval. 

Ex.  1    The  mean  ordinate  of  a  semicircle  of  radius  a  = 

•7854fl. 

^7ia^
 

2a 

202 

7:a 

"4 



183,  184.]  MEAN  VALUES.  203 

2.  The  mean  square  of  the  ordinate  of  a  semicircle 

_  J  —a  J  —a 
2a  2a 

IX 

3.  Find  the  mean  ordinate  and  the  mean  square  of  the  ordinate 
of  the  curve  i/  =  a  sin  nx  from  a:  =  0  to  x  =  r.. 

Ans.  (1)  2a/n;r,     (2)  a^/2n. 
4.  The  arc  of  a  semicircle  is  divided  into  equal  parts,  from 

the  extremities  of  which  perpendiculars  are  drawn  to  the  diameter. 
What  is  the  mean  value  of  their  length? 

Radii  through  the  points  of  section  divide  the  angle  at  the 
centre  into  equal  parts.     Hence 

£lasmd~~=—\   sin  6  dd  =—. 
dd        71  j  0  TT 

5.  In  Ex.  4  find  the  mean  distance  of  the  points  in  the  cir- 
cumference from  one  end  of  the  diameter.  Ans.  4a/;r. 

6.  A  straight  line  AB  of  length  a  is  divided  into  equal  parts, 
P  being  a  point  of  section.  Find  the  mean  value  oi  AP  .  PB  for 

all  positions  of  P.  Ans.  ̂ a^. 
7.  The  northern  hemisphere  is  divided  into  zones  of  equal 

area.     Find  their  mean  distance  from  the  pole. 
Ans.  Arc  =  radius. 

8.  A  rectangle  is  divided  into  rectangles  by  lines  which  divide 
the  sides  equally.  Find  the  mean  square  of  the  distance  of  the 
rectangles  from  one  corner  of  the  given  rectangle. 

The  sides  at  that  corner  being  axes, 

ah  1    fa  fb 

184.  Let  dX  be  an  element  of  any  quantity  (length,  area, 
volume,  mass,  time,  etc.),  and  u  a  variable  which  is  taken 

any  number  m  times  per  unit  of  L     Then 

£1  um  dX     £1  u  dX 

£1  m  dX  '"  £1  dX 
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expresses  the  limit  of  the  sum  of  the  u^s  divided  by  their 
number,  and  is  thus  the  mean  value  of  u  for  the  range  in- 

volved in  the  summation.  If  the  elements  are  unequal 
the  result  is  still  the  same  as  the  mean  value  of  u  taken 

once  for  each  of  the  elements  if  they  were  equal,  since  I  for 

each  one-mth  part  of  the  unit  is  equivalent  to  m  per  unit. 

Ex  1.  To  find  the  mean  distance  of  points  within  a  circle  of 
radius  a  from  a  given  point  on  the  circumference. 

In  this  case  dA  is  an  element  of  area,  say  r  dO  dr  (§  178),  u 
is  r,  hence  the  mean  value 

Jo  Jo 

•  9  r2a  cos  B 
rHd  dr 

32 
a. 

2.  The  plane  base  of  a  hemisphere  of  radius  a  is  horizontal. 
Find  (1)  the  mean  height  of  points  within  the  hemisphere  (the 
element  being  one  of  volume),  (2)  the  mean  height  of  points  on 
the  curved  surface,  (3)  the  mean  depth  of  points  in  the  base 
below  the  curved  surface.  Ans.    (1)  fa,    (2)  \a,    (3)  fa. 

In  (1)  and  (2)  the  mean  height  is  the  height  of  the  centre  of 

gravity,*  in  (3)  it  is  volume/base. 
3.  Find  the  mean  square  of  the  distance  of  points  within  a 

sphere  of  radius  a  from  (1)  the  centre,  (2)  a  point  on  the  surface, 
(3)  a  diameter.  Ans.    (1)  \a\    (2)  ̂ a\    (3)  |a^ 

♦The  point  whose  ccodinates  are  the  mean  values  of  the  rec- 
tangular cc6:*dinates  of  points  in  a  body  for  equal  elements  of  mass 

is  easily  seen  to  be  the  centre  of  mass  (or  of  gravity)  and  therefore 
the  centroid  if  the  body  is  homogeneous.  The  centroid  is  sometimes 
called  the  centre  of  mean  position. 



CHAPTER  XXXVII. 

INTRINSIC    EQUATION    OF    A    CURVE.     THE    TRACTRIX 
THE  CATENARY. 

Intrinsic  Equation  of  a  Curve. 

185.  Let  the  tangent  or  normal  of  a  curve  turn  through 
an  angle  X  while  the  point  of  contact  moves  a  distance  s 
along    the    curve.     The    equation    con- 

necting s   and   X   is    called   the   intrinsic 

equation  of  the  cur^^e. 

Ex.  1.  The  intrinsic  equation  of  a- circle  of 
radius  a  is  obviously  s  =  aL 

2.  To   find  the   intrinsic  equation   of   the 

semi-cubical  parabola  ay^  =  x^  (Fig.  29),  the  Fig.  114. 
intrinsic  origin  being  the  cusp. 

The  tangent  at  the  origin  is  the  rc-axis.     Hence 

,     dy    3  /x\i •tan;=  ̂ =_(_)   . 
dx    2  \a/ 

,'.  x  =  ̂ ata,n^X,     whence     y  =  ̂ \a  tan^X. 

Also  ds  =  Vdx^  +  dy^  =  ̂ a  sec^A  tan  X  dX. 

.'.  s  =  ̂ a\  sec^ Jo X  tan  X  dX,     or     s  =  j\a  (sec^X  —  l), 

the  equation  required. 

3.  Find  the  intrinsic  equation  of  the  common  parabola  y^  =  4:ax, 
the  origin  being  the  vertex 

If  the  tangent  make  an  angle  X  with  the  positive  direction  of  the 

y-SLxis,  tan  X  =  dx/dy. 
Ans.  s  =  a  sec  X  tan  X  +  a  log  (sec  X  +  tan  X). 205 
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4.  Find  the  intrinsic  equation  of  the  cycloid  x  =  a{d-sm  6), 
y  =  ail -cos  0)  (Fig.  19),  the  origin  being  at  a  cusp  (say,  at  a:  =  0, 
2/  =  0). 

[Show  that  X{  =  YSP)  =  ̂ 0.]  Arts,  s  =  4a(l  -  cos  X.) 
5.  Find  the  intrinsic  equation  of  the  four-cusped  hypocycloid 

x  =  a  sin^/?,  y  =  a  cos^^  (Fig.  18),  the  origin  being  at  a  cusp  (say  at 
x  =  0,y  =  a). 

[Show  that  X{  =  OST)^d.]  Ans.  s  =  fa(l-cos  2>i). 
6.  Show  that  an  equation  may  be  transformed  to  a  new  origin 

at  (s',  k')  by  substituting  s-\-s'  for  s  and  X  +  X'  for  X  m  the  given 
equation. 

7.  Find  the  equations  of  the  curves  of  Exs.  4  and  5  when  the 
origin  is  a  vertex  (the  middle  point  of  the  arc  between  successive 

3usps).  Ans.    (l)s  =  4osin^,    (2)s  =  fasin2^ 

i86.  Instead  of  expressing  x  and  y  in  terms  of  X,  we 

may  be  able  to  express  s  and  X  in  terms  of  x  or  some  other 
variable,  and  eliminate  that  variable. 

Ex.  1.  The  catenary  ?/ =  <?  cosh  (a:/a)  (Fig.  117),  the  origin 
being  the  lowest  point,  and  hence  the  initial  tangent  being  parallel 
to  the  X-axis. 

tan  X  =  dy/dx  =  smh.  {x/a),  and  c?s  =  cosh  {x/a)  dx,  whence 
8  =  a  sinh  (x/a).     .'.s  =  a  tan  X. 

2.  The  cardioid  r  =  a(l-cos  i9),  the  cusp  being  the  polar  and 
the  intrinsic  origin. 

ds  =  Vr'dO^-\-dr^  =  2a  sin  ̂ 0  dd,  .-.  s  =  4a{l-cos^0). 

Also  X^e  +  i/>,  where  ( §  136)  tan  0  =  r  dd/dr  =  tan  ̂ d. 
.'.  X  =  10.     Hence    s  =  4a(l-cos  ̂ A). 
Show  that  the  equation  is  s  =  4a  sin  ̂ X  if  the  origin  is  the  point 

most  remote  from  the  cusp. 
3.  Show  that  the  intrinsic  equation  of  an  epicycloid  is 

46(a  +  fe) a  +  fe)/,  aX    \   ( 1  -  cos  —^cr ) . 
a       \  a  +  2b/' 

when  the  origin  is  a  cusp,  and 

4b{a  +  b)   .       aX 8=   sm 

a  a  +  2b' 
when  the  origin  is  a  vertex. 
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187.  The  radius  of  curvature.  The  curvature  is  the 

s-rate  of  X  (§86)  and  hence  R=^ds/dX  =  j'{X)  if  s  =  /(/l)  is 
the  equation  of  the  curve. 

188.  The  evolute.  Let  0  be  the  origin  of  the  given  curve 

s  =  j(X),  P  any  other  point  on  the  curve,  C,  Q  the  centres  of 
curvature  of  0  and  P,  and  let  C  be  taken 

as  the  origin  of  the  evolute.  Then  PQ 

=  I\X)  and  OC  =  f  (0),  also  CQ  =  PQ-OC 
(§  90  (2)).  Hence  the  equation  of  the 
evolute  is 

Ex.  1.  Show  that  the  evolute  (1)  of  a  parabola  is  a  semi- 
cubical  parabola,  (2)  of  a  cycloid  is  an  equal  cycloid,  (3)  of  a 

four-cusped  hypocycloid  is  a  similar  curve  of  twi'ce  the  size  of 
the  given  curve,  (4)  of  a  cardioid  is  a  cardioid  of  one  third  the 
size  of  the  given  one. 

2.  What  is  the  intrinsic  equation  of  the  involute  of  (1)  a  circle, 
(2)  a  catenary,  the  involute  beginning  at  a  point  on  the  given 

curve?  Ans.    (1)  s  =  ̂ aP,    (2)  s  =  alog  sec  ̂  

The  Tractrix. 

189.  This  is  the  curve  in  which  the  tangent  is  of  con- 
stant length. 

Let  {x,  y)  be  the  coordinates  of  a  point  P  on  the  curve 

(Fig.  116),  and  \et  the  tangent  PT  =  a^ 

From  the  figure  dy/dx=-y/Va^-y^,  from  which  the 

equation  may  be  found  by  integrating,  the  result  being 

x  =  asech-^  (y/a)  —  Va^  —  y^. 

*  The  curve  is  the  path  of  a  body  which  is  drawn  along  on  a  rough 

horizontal  plane  by  a  string  of  length  a,  the  other  end  of  which  is 

moved  along  a  straight  line  OX;  whence  the  name  of  the  curve. 
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Since  ydx=  —  dy\^a^—y^,  the  element  of  the  area  of  the 
curve  =  the  element  of  the  area  of  the  circle  of  radius  a,  .'. 
the  whole  area  between  the  curve  and  its  asymptote  (the 

aj-axis)  is  the  same  as  that  of  the  circle,  viz.,  na^. 

Fig.  116 

The  length  of  the  curve  from  Y  to  any  point  whose  ordinate 
is  h  may  be  found  as  follows: 

ds 
dy 

y =-i:f"'»«(f) 
Let  the  tangent  make  an  angle  X  with  YO.  Then  s  = 

a  log  sec  X,  which  is  the  intrinsic  equation  (origin  Y)  of  the 
curve.  Hence  the  radius  of  curvature  =  c^s/d-^  =  a  tan  >^, 
and  the  evolute  is  (§  188)  s  =  a  tan  X,  a  catenary  (§  192). 

The  area  of  the  surface  of  revolution  *  of  the  curve  about 

the  X-axis  =  47ra2,  and  the  volume  =  §7ra3. 

*  This  surface  is  known  as  the  pseudo-sphere. 
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The  Catenary. 

190.  This  is  the  curve  formed  by  a  uniform  chain  hanging 
vertically. 

Let  A  be  the  lowest  point,  P  any  other  point.  From  P 
draw  PB  vertically  and  equal  to  the  length  AP  or  s  of  the 
chain,  and  from  B  draw  a  horizontal  line  to  meet  the  tan- 
ent  at  P  in  C,  and  let  BC  =  a. 

Fig   117. 

191.  Mechanics  of  the  figure.  The  portion  AP  of  the  chain 
is  in  equilibrium  under  the  action  of  three  forces,  viz.,  the 
horizontal  tension  at  A,  the  tension  at  P  in  the  direction  of 
the  tangent,  and  the  weight,  which  is  vertical.  Hence  PBC 
is  a  triangle  of  forces  for  AP,  and  since  the  vertical  force  on 
AP  is  the  weight  of  a  length  PB  of  the  chain,  it  follows  that 
the  tension  at  P  is  equal  to  the  weight  of  a  length  CP  of  the 
chain,  and  the  tension  at  A  to  the  weight  of  a  length  a  of  a 
chain,  and  therefore  a  is  constant. 

192.  Geometry  of  the  figure.  Draw  from  A  a  vertical  line 

and  take  OA--=^a;   take  0  as  the  origin,  0^4  as  ?/-axis  and  a 
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horizontal  line  OX  as  ic-axis.  Then  OM=x,  MP=y.  (By 
this  choice  of  axes  the  constants  <5f  integration  will  =  0.) 

Since  CB,  BP,  and  CP  are  a,  s,  and  \  a^-\-s^,  respectively, 
we  have 

dx     a  ̂  ̂'    ds     Va^  +  s^  ds     Va^  +  s^ 

From  (3)  dy = s  ds/VaH^,  :.  y= ^/'c^^^  =  CP,  (4) 
.*.  the  tension  at  any  point  P  is  equal  to  the  weight  of  a 
length  y  of  the  chain. 

From  (2),  dx=  ads/^/a?-\-s^,  .*.  a;  =  a  sinh~^ (s/a), 
^  a      £_        £ 

.*.  s  =  a  sinh-,     or     =-  {ea  —  e   a),  (5) 

which  gives  the  length  from  the  lowest  point  to  the  point 
whose  abscissa  is. a:. 

X 

From  (1)  and  (5),  rfv  =  sinh  —dx. 

.*.  2/ =  a  cosh— ,     or     =—\ea+ea\,  (6) 

the  equation  of  the  curve. 

From  (1),  s  =  atan^,  the  intrinsic  equation  (origin  A) 
of  the  curve. 

ThenormaL     NP:MP::CP:CB,  .'.  NP/y=y/a, or NP= 

The  radius  of  Curvature.  R=ds/d(l)  =  asec^(l)  =  ay^/a^  = 
y^/a,  or  the  radius  of  curvature  is  equal  to  the  normal. 

Let  D  be  the  foot  of  the  perpendicular  from  M  on  PT. 
gince  MP  =  CP,  /.  MD  =  CB  =  a  and  DP=BP  =  s. 

Hence  the  locus  of  D  is  the  involute  of  the  catenary. 
Also  MD,  the  tangent  at  D  to  the  involute,  is  of  constant 

len^h,  .*.  the  involute  is  a  tractrix. 
The  intrinsic  equation  of  the  e volute  is  s  =  a(sec2<^— 1). 



CHAPTER  XXXVIII. 

INFINITE  SERIES  * 

193.  A  series  is  a  succession  of  terms  which  follow  one 
another  according  to  some  law.  The  series  is  said  to  be 
infinite  when  it  does  not  terminate.  If  we  add  the  terms 

of  the  infinite  series  l  +  J  +  i  +  J+...it  is  seen  that  the 
sum  approaches  a  limit,  viz.,  2;  for  this  reason  the  series 
is  said  to  be  convergent.    That  the  limit  is  2  is  also  seen 

by  taking  the  sum  of  the  first  n  terms,  which  is  2— ^— ̂ r, 
Li 

and  finding  the  limit  of  this  when  n=  00 . 
This  series  is  a  particular  case  of  the  infinite  geometrical 

progression 

\^x\x^-\-x^^  ...  .  (1) 

From  elementary  algebra  the  limit  of  the  sum  is  1/(1  — a;) 
if  |a;|<l.  If  |a:|  >  1  the  series  has  no  limit  or  is  non-con- 
vergent. 

194.  Let      7^+^1+1^2  +  ̂ 3+   .  .  .    +t^n  +  ̂ ^n+l+   •  •  •  (2) 
be  an  infinite  series,  and  let  s^  be  the  sum  of  the  first  n  terms. 

The  series  is  then  convergent  if  s„  has  a  limit  when  n=cr)  ; 
let  the  limit,  if  it  exists,  be  s.  The  limit  must  as  in  all  other 

cases  be  a  definite  finite  quantity  (§  2)  such  that  8—Bn  has 
the  limit  0.  Hence  a  series  cannot  be  convergent  unless 
Un  =  ̂   when  n=oo,  i.e.  unless  the  terms  tend  to  a  limit  0. 

This  is  a  necessary  but  not  a  sufficient  condition  for  con- 
vergence. 

*0n  the  subject  of  Infinite  Series  the  student  may  consult  Os-'-ood's 
Introduction  to  Infinite  Series  (Harvard  University),  also  Gibson's 
Calculus  (Macmillan). 

211 
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If  a  series  is  non-convergent  it  is  either  divergent  or  oscilla- 
tory, divergent  if  Sn  becomes  infinite  with  n,  oscillatory  if  s„ 

remains  finite  but  does  not  approach  a  limit.  Series  (1)  is 

divergent  if  \x\>l  or  x=l,  and  oscillatory  if  x=  —  l,  Sn  in 
the  latter  case  being  1,  0,  1,  0,  etc.,  as  n  increases,  but  never 
approaching  a  limit. 

In  general,  a  series  is  of  no  practical  value  unless  it  is 
convergent. 

195.  Without  expressing  s„  in  terms  of  n  it  may  be  pos- 
sible to  test  a  given  series  for  convergence.  For  this  pur- 
pose various  methods  are  given  in  works  on  algebra;  we 

recall  a  few  results  which  are  of  importance  in  our  work. 
(1)  A  series  is  convergent  if  (a)  the  terms  are  alternately 

+  and  — ,  (6)  the  absolute  value  of  the  terms  constantly 
diminishes,  and  (c)  the  limit  of  that  value  is  0  when  n  =  00 . 

Ex.  l-i  +  J-i  +  . . .  is  convergent  (see  §2,  Ex.3).  The. 
limit  of  the  sum  lies  between  -69314  and  '69315.  It  =  loge2  (§  197 
Ex.  1).  The  series  2  — f +  ̂ — .  .  .  satisfies  conditions  (a)  and  (b) 
but  not  (c).     It  is  oscillatory  (see  §  2,  Ex.  3). 

(2)  The  series  l+^  +  o^+  •  •  -is  convergent  when  c>l, 

divergent  when  c<l.  Thus  the  "harmonic  series" 

l  +  i  +  J+  ...  is  divergent,  but  1+22  +  02+  •  •  •  is  conver- 

gent. 

Ex.  1.  ~ — 7i  +  1 — ;r  +  '''  is  convergent,  since  each  term  is 

less  than  the  corresponding  term  of  1  +  —  + . . . 

+ . . . ,  where  h  is  an  integer  larger  than  a,  and  this  is  a  part  of 
the  divergent  series  1  +  ̂  +  J  + .  . . 

(3)  If  a  series  is  convergent  when  all  the  terms  are  posi- 
tive, it  will  be  convergent  if  any  of  the  terms  are  negative. 
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_,      cos  a:     cos  2a; 
Ex.  -— -  +  + .  . .  IS  convergent  for  all  values  of  x,  for 

if  all  the  terms  were  "positive  they  would  not   be    greater    than 

the  corresponding  terms  of  —+-  +  .. . J.      Zi 

The  contrary  is  not  necessarily  true,  that  is,  a  series  may 
be  convergent  when  some  of  the  terms  are  negative,  but  not 

when  those  terms  are  made  positive.  Thus  1— |  +  J—  ...  is 
convergent,  but  l  +  i  +  J  +  .  .  .  is  divergent. 

A  series  is  said  to  be  absolutely  convergent  when  the  abso- 
lute values  of  the  terms  form  a  convergent  series,  i.e.,  when 

the  series  remains  convergent  if  all  the  terms  are  made  posi- 
tive. If  not  absolutely  convergent  it  is  said  to  be  con- 

ditionally convergent.  Thus  1— ^  +  ̂ — |+...is  absolutely 
convergent,  1  — J  +  J— i+  .  .  .  is  conditionally  convergent. 
It  is  known  that  the  convergence  and  limit  of  an  absolutely 
convergent  series  are  independent  of  the  order  in  which 
the  terms  are  taken,  whereas  the  terms  of  a  conditionally 
convergent  series  may  be  grouped  so  as  to  converge  to  a 
different  limit  (in  fact  to  an  assigned  limit)  or  to  diverge. 

For  example,  arrange  the  series  1— i+J— i+  .    .  as  follows: 

(l-i)-i  +  (*-«-i  +  (i-TV)-   ... 

This  =  ̂ -i+i-J+  ...  =4(l-i  +  J-i+  ...),  one-half 
of  the  original  series. 

(4)  A  series  1^0+^*1  +  .  .  .+Un+Un+i  +.  .  .  is  absolutely  con- 
vergent if  R,  the  absolute  value  of  the  limit  of  Un+i/un  when 

n=  00 ,  is  <1,  divergent  if  J?>1.  It  may  or  may  not  be 
convergent  if  R=l. 

196.  Power  series.  The  most  important  infinite  series  are 
those  of  the  form 

ao-haix+a2X^  +  a3X^+  .  .  .  +ana:^  +  an+i^"'^^  +  .  .  .  ,       (1) 

which  is  called  a  power  series  in  x.     The  indices  are  posi- 
tive ascending  integers,  and  ao,ai,  .  .  .  are  independent  of  x. 
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By  assigning  values  to  x  any  number  of  series  may  be  formed 

from  a  given  power  series. 

Let  the  absolute  value  of  the  limit  of  an/an+i  when  n=oo 
be  r.  It  follows  from  §  195  (4)  that  the  power  series  is 

absolutely  convergent  if  \x\<r  (i.e.  if  x  >  — r  and  <r), 
divergent  if  |x|>r.  If  a;  =  r  the  series  may  be  convergent 
or  non-convergent.  If  a„/a„+ i  =  oo  when  n=oo,the  series 
is  convergent  for  all  values  of  x. 

Since  the  limit  for  n  + 1  =  oo  is  the  same  as  for  n=oc , 
the  value  of  r  may  be  found  equally  well  from  a„+i/a„+2 

or  from  an-x/dn,  or  any  two  successive  coefficients. 

^     ,    ,  x"^    x^  x^ 
Ex.1.  1+0:+—  +  ̂ -  +  ...+—  +  ... 2      3  n 

1  an      n^\  \ 
an  =  —,     .'.   =   =1+  — =1     when    n  =  oo,     .'.r  =  l. n  an+i        n  n 

Hence  the  series  is  absolutely  convergent   if  |jj|  <1.      It  is  con- 

ditionally convergent  if  x=  —1,  divergent  for  all  other  values  of  x. 
x^     x^  x^ 

an/an+i  =  {n  +  l)\/n\  =  n  +  l  =  co  when  n  =  oo. 

Hence  the  series  is  absolutely  convergent  for  all  values  of  x. 

x^     x^  x^    x"^ 
3.  X +—+-—  +  ..  .  and  1  +  o  i  +  7i  +  •  •  •  ̂ ^^  parts  of  the  series  of oi     01  2!     4! 

Ex.  2,  and  are  therefore  absolutely  convergent  for  all  values  of  x. 

4.  The  Binomial  Series     1+mx  H   x^  + .  .  . 

an/an+i  =  (n  +  l)/(m  — 7i)=^-l    when   n  =  cc,  .'.  r  =  l. 

Hence  the  series  is  absolutely  convergent  if  [.r  |  <  1  whatever  the  value 

of  m.  It  may  be  proved  to  be  absolutely  convergent  if  \x\  =  1  and 

m  is  positive,  and  conditionally  convergent  if  a:  =  l  and  -1  <m<0. 
5.  If   the  power   series   Oq -\- aiX -\- ajc^  + .  .  .  is  convergent  when 

|x|<r,  the  series  a, +2a2X  +  ...  formed  from  the  derivatives  of 
the  terms  is  also  convergent  when  |j|  <r. 

_,  -  n         On  aw   ,     , 
For  £„__._  =4.„_|  =  lr. 
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6.  Show  also  that  the  series  c  +  aoX  +  ̂a^x^  +  ̂a^x^  +  .  .  .  formed 
by  integrating  (c  being  a  constant)  is  convergent  if  |a;|  <r. 

197.  A  power  series  ao-{-aix-{-a2X^+  ...may  be  such 
that  the  Hmit  of  the  sum  for  every  value  of  x  within  the 

interval  of  convergence  (—r<x<r)  is  equal  to  the  value 
of  some  function  }{x)  for  that  value  of  x.  On  this  under- 

standing we  may  write 

f{x)=ao+aiX  +  cL2X^+  .  .  .  (1) 

Thus    if    |a:|<l,   (l+a:)^  =  l+mx  +  ̂^'^7^^x2+  .  .  .  ,  and 
as  a  particular  case  1/il+x)  =l  —  x  +  x^—  ....  If  |a;|>l 
there  is  no  connection  between  the  value  of  the  function 
and  the  sum  of  the  terms  of  the  series. 

If  we  differentiate  both  sides  of  (1)  as  if  the  series  were 
finite  we  have 

fix)  =ai  -h2a2X  +  ̂ asx^+  ...  (2) 

Similarly,  multiplying  (1)  by  dx  and  integrating, 

F(x)=c+aox  +  ̂aiX^  +  ia2X^+  .  .  .  ,  (3) 

c  being  the  integration  constant,  viz.,  the  value  of  F{x) 
when  x=0.  It  may  be  proved  that  these  results  hold  true 
(i.e.,  the  new  functions  are  equal  to  the  limits  of  the  sum 
of  the  terms  of  the  new  series)  for  all  values  of  x  for  which 

the  new  series  are  convergent.  These  values  are— r<a:<r 
(§  196,  Exs.  5,  6),  the  same  as  those  of  the  original  series. 

If,  however,  any  one  of  the  series  is  also  convergent  when 
x=r  or  —r,  it  must  not  be  assumed  that  the  others  are  also 

convergent  for  those  values.  Integration  in  general  increases 

the  rapidity  of  the  convergence  of  a  series,  and  it  may  change 

a  series  which  is  divergent  when  x=r  into  one  which  is  con- 
vergent. 
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Thus     l  +  ia;  +  Ja;2+ .  .  .  is    divergent    when    x  =  l,    but 

x+-^x^+-^0!^-\-  ...  is  convergent  when  x  =  l, 

Ex.  1.  Logarithmic  series.     If  |:c|  <1, 

;   =^1-X+X^-X^  +  .  .. 1+X 

Multiply  by  dx  and  integrate.     Then  if  \x\  <1, 

log  {l+x)  =  x-^x'  +  ix'-{x*  +  .  .  .  (1) 

(No  constant  of  integration,  since  both  sides  vanish  with  x.) 

(1)  is  also  convergent  if  a;  =  l,  §  195  (1),  .*.  log  2  =  V-^  +  ̂ -. .  . 
(1)  may  be  used  for  the  calculation  of  the  Napierian  logarithm 

of  any  number  >  —  1  and  <1,  but  it  converges  too  slowly  to 
be  of  much  value  for  such  calculation,  unless  |x|  is  very  small. 

Change  x  in  (1)  into  —x  and  subtract  from  (1).     Then 

'^"^""^      2{x  +  ̂x'  +  lx' +  ...).  (2) 

>-  (f^D 

Lety={l+x)/{l-x),  then  x=={y-l)/{y  +  l)  Substituting 
in  (2), 

This  series  may  be  used  for  the  calculation  of  any  Napierian 

logarithm,  since  {y  —  l)/{y  +  l)  is  necessarily  a  proper  fraction 
when  y  is  any  positive  quantity. 

Thus  if  y=2,  {y-l)/(y  +  l)  =  h 

.-.  loge2  =  2[KiaV  +  ia)'  +  ...]=-693147. 

Similarly    loge3  =  2  [KKi)'  +  Hi)'  +  .  ..]  =  1-098612. 

Also,  loge  4  =  2  loge  2  =  1-  386294. 

Another  series  may  be  derived  from  (2)  thus:  put  (1  +x)/{l  -x) 
=  (1 +?/)/?/,  then  x  =  l/{l-h2y);  hence,  remembering  that 

log  [(1  +2/)/2/]  =  log  (1  +2/)  -log  y, 
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Thusif  ?/  =  4,  loge5  =  loge4  +  2[i  +  ia)'+Ki)N  ..]  =  r609438. 
Hence  loge  10  ==loge  5+ loge  2  =  2-302585,  and  hence  the  modulus* 
of  the  common  logarithms  (which  =1 /loge  10)  is  '4342945.  The 

common  logarithms  may  therefore  be  found  from  the*  Napierian 
logarithms  by  multiplying  by  '4342945,  and,  conversely,  the 
Napierian  from  the  common  logarithms  by  multiplying  by  2*  302585. 

2-  Gregory's  series.     Prove  that  for  —  l<a;<l, 

ta,n-^  x^x-^x^  +  ̂ x^-. . .  (1) 

This  series  gives  the  radian  measure  of  an  angle  in  terms  of 
its  tangent.     Show  that 

^.i_i+i-^+...=2(X+_L+...). 

This  converges  slowly,  but  by  applying  (1)  to  the  relation 

—  =  4  tan-^  ̂ ~^^^~^9QQ  ̂   rapidly  converging  series  for  the  calcu- 
lation of  TT  is  obtained. 

Since    tan-^a;  =  — —  tan-^— ,     if  |a:|>  1  we  have 2  X 

,  TT         1  1  1 
tan-^=_-_+-_-__  +  ... 

3.  Prove  that 

1  a:'      1  .3a;'     1  .3.5a;'  ,   ,     , 
sm-.:  =  x+--+— -^-  +  -T.6  7+--"    '"'^^^ 

and  hence,  making  x  =  ̂,  that 

*If  x=\ogay,  then  by  definition  of  a  logarithm,  a^  =  y.  Taking 
logarithms  of  this,  the  base  being  supposed  e,  we  have  x  logea  =  \ogey, 

'.  X  or\osaV  =  ̂ r^^>  or  the  logarithm  of  y  is  changed  from  base  e 
loge  a 

to  base  a  by  multiplying  by  -,   ,  which  is  called  the  modulus  of 

the  system  of  base  a. 

If  w  =  e    loeoe  =   ,  hence  the  modulus  of  the  common  system 
^       '       *=         loge  a 

is  also  equal  to  logio^- 
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Show  also  that  sec-x=|-i-i-^-^-. . . ,    lx|>  1. 

198.  Maclaurin's  Series.     If  there    is    a    power    series* 

which=/(a:),    that   series    is    j{0)+f'{0)x+^-^^x^  +  . ,  . 

For,  suppose  it  to  be  ao+aiX  +  a2X^+  .  .  .     Then 

f(x)=ao+aix+a2X^+as3^+a4^x^+  ...  (1) 

Differentiating  successively, 

f'{x)  =ai  H  2a2X+3a3X^  +  4a^x^+  ...  (2) 

/"(x)  =2a2  +  2  .  3a3a:  +  3  .  4a^x^+  ...  (3) 

/'"(x)  =2  .  3a3  +2  .  3  .  Aa^xi-  ...  (4) 

etc.  If  (1)  is  convergent  for  |a:|<r,  (2),  (3),  .  .  .  are  con- 
vergent for  the  same  values  of  x,  and  this  interval  includes 

x  =  0.     Making  x=0  in  (1),  (2),  (3),  ...  we  have 

/(0)  =  ao,   r(0)  =  ai,   r(0)  =  2a2,   r(0)  =  2  .  3^3,  .  .  . 

Substituting  in  (1), 

/(x)  =  /(0)+f  (0)x+^^x2+Mx3+  ...  (5) 

This  is  Maclaurin's  Series.     In  substituting  in  (5)  we  are 
said  to  expand  or  develop  f{x)  into  a  power  series. 

Ex.  1.  To  expand  sin  x. 

fix)  =  sin  X,  .*.      /(0)  =  sinO  =  0; 
/'(x)  =  cosa;,  .*.     /'(O)  =  cos  0=1; 
nx)=-8ina;,  .'.    /"(0)= -sin  0  =  0; 
/'"(a:)=  -cosx,  .-.  r'(0)=  -cosO=  -l,etc. 

Substituting  in  (5)  we  have 

smx  =  x-—+-^-...,  (6) 

which  gives  the  sine  of  an  angle  in  terms  of  its  measure  in  radians 

♦There  is  such  a  series  in  most  cases  if  f(x)  and  all  its  derivativfc£> 
are  real  and  finite  when  x  =  0.     See  §  210. 



198,  199.]  INFINITE  SERIES.  219 

The  expansion  of  cos  x  may  be  found  in  the  same  manner,  or 
by  differentiating  (6) ;  hence x^     X 

cosa:  =  l--  +  --...  (7) 

(6)  and  (7)  are  convergent  for  all  values  of  x  (§  196,  Ex.  3). 

2.  The  expansions  of  e^  and  a^  are  particular  cases  of  Maclaurin's 
Series.     For 

f{x)  =  e^,  r{x)  =  e^,   r(x)  =  e^,    etc.; 
.-.  f{0)  =  e'  =  l,    /'(0)  =  1,     r(0)  =  l,     etc. 

x'^     X 

...  e-=l+x  +  -  +  -  +  ...  XS) 

Similarly,     a^  =  l+Ax  +  — -  +  -^  +  ...  (A  -  loge  a).  (9) 

These  series  are  also  convergent  for  all  values  of  a:  (§  196,  Ex.  2). 

199.  If  we  attempt  to  expand  cot  x  by  Maclaurin's  Series 
we  meet  a  difficulty  at  the  outset,  viz.,  cot  0  =  00,  This 
implies  that  there  is  no  power  series  for  cot  x. 

Ex.  To  expand  x  cot  x. 

cos  a: 
a;  cot  a;  =  X 

/,     x'     X*  \       ̂      x^     X* 

sin  X  x^     x^  x^    x^ 

""'Sl^Bl"'"        ̂ ""3!"^5[~--' 

Assume  x  cot  x  =  1  +  agX^  +  a^x*  + .  . .  (There  cannot  be  any 
odd  powers,  since  x  cot  x  is  an  even  function.  See  Ex.  12,  p.  40.) 
Then 

,     x''    x' -...=  (1- X'      X* 

"3!"^  5! 

-...) 

Multiplying  * and  equating  coefficients. 

X  cot  X 

-?■ 

x'
 

45
 

Hence cotx 
1       X 

~x     3" 

x' 

45 

.  ..)  {l-ha^x^  +  a^x* +  ...). 

*  The  product  of  two  convergent  series  is  obtained  by  multiplying 
them  term  by  term  as  if  they  were  finite  series,  provided  that  one 
of  them  (at  least)  is  absolutely  convergent. 
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200.  Formulae  derived  from  the  exponential  series.  In 

§  198,  (8), write xi for x, where i=\/  —I  (observe  that  i^  =  —  1, 
1*3=— V^, '^4=1,  i5  =  t,  etc.). 

•••^'=  0-21  +  4!- ••)+H"-3!  +  5-!---)' 
or  e^*  =  cos  a;+isin  X.  (1) 

Writing  —x  for  x, 

e~^^ = cos  X—  i  sin  x.  (2) 
Adding  and  subtracting, 

cosx=i(^*  +  e-^0.  (3) 

sin  a;  =— (e^*— e-^*);  (4) ^1 

whence      .     tan^=i(g^)  =4(g^).  (5) 

These  are  Euler's  Formulae. 
In  (1)  write  nx  for  x. 

:.  cos  nx-\-i  sin  na;=e'^*=  (e«*)'»=  (cos  a;+i  sin  a:)^, 

.*.  (cos  x-\-i  sin  x)"  =  cos  nx  + 1  sin  nx.  (6) 

This  is  Demoivre's  Theorem. 

201.  Taylor's  Series.  Suppose  the  function  of  x  to  be 
J{h-\-x).    The  first  x-derivative  is 

j'(h  +  x)d(h+x)/dx=f'ih+x). 

The  second  is  f"{h  +  x),  etc.  The  values  of  the  function 
and  its  derivatives  for  x  =  0  are  f{h),  j'{h),  ]"{h), .  . .  Hence 
Maclaurin's  Series  takes  the  form 

j{h^x)=m^r{h)x+^^x'^-^^^^+' . . 
This  is  Taylor's  Series.  The  conditions  under  which 

the  function  is  represented  by  the  series  will  be  considered 
in  Ch.  XXXIX. 

I 



200,201.]  "  INFINITE  SERIES.  221 

Ex.  1.  (/i+a;)^  =  /i^+w/i^-^x+^^^^^pi-^/i"»-2a;2  +  ... 
n     '    fh  ,    \      •    I,  .         I.  sin  /i        COS  /i 
2.  sm  (/i+x)  =  sin  h  +  cosh  .  x — ttt^  — o7~^  +•  •• 

3.  If/(x)=x'-2x2-x  +  3,     writedown    f{x  +  h). 

Examples. 

1.  Expand  (l+x)"^,  log  (l+x),  tan-^a;,  by  Maclaurin's  series. 

^    ,  a:'        2x^         17a:^ 
2.tana:  =  .  +  --4-3--  +  j-^^  +  ... 

,     a;2    5x*    61x« 3.  secx  =  Hh-  +  -  +  — +  ... 

■         ,  a;2     x^     X®      17a;^ 
4.  logsecx  =  -  +  -+j-^  +  — ̂  +  ... 

5.  cos3x  =  l — 7r+-^-' '  • 2d  o 

6. x^    a:*     a:^ 

7. e^seca;  =  l+x+x2  +  fa;3  +  . 

8. 
la;       W    ̂ 

coseca.-^+3,+3^^,+ 

9. Show  that 

x""    x" 
cosh  a:  =  l +—+—  +  . . ., 

x^    x' 
sinha:  =  a:+-+-  +  ..., 

and  hence  that  cosh  x  =  cos  ix,  sinh  a;=  —i  sin  ix,  where  i  =V  — 1. 
Ill  ;r^ 

10.  Assuming  p  "^  22  +  T2  + '  *  *  ̂  "g  '  ̂^^^  *^^* 

111  t:^  ̂ 11^1 

P  +  3-^  +  5-^  +  ---^¥'     ̂ ^^     p-2~^+3^""---  =  I^' 
fl  1  TT^ 

Also  that      -  log  (1  +x)c?a:  =  Y2- 

"       ,        (ij         ̂ 111.31 
ll.Showthat!    -^=.  =  1--. _+_.--... 

1: 
12.  When  a:  =  0  show  from  the  series  that 

(1)  (sina:)/a;=l,     (2)  (tanx)/x=l,     (3)  (1-cos  x)/x^=^  i 

(4)  (tana;-sina:)/a;3  =  i     (5)  (6^-l)/a;=l. 
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13.  If  a  circular  arc  (radius  a)  subtends  an  angle  6  at  the  centre, 
show  that  when  0  is  very  small 

arc  -  chord  =  2^4  a  ̂^,  nearly. 

14.  If  ̂   is  a  small  angle,  show  that 

sin  e  =  d^'^^e,  ] 

„,   ,  ̂nearly. tan^  =  ̂ Vcos-^^  J 

From  these  formulae  are  derived  the  rules  given  in  Mathe- 
matical Tables  for  finding  the  sines  and  tangents  of  small  angles. 

15.  The  chord  of  a  circular  arc  is  C,  the  chord  of  half  the  arc 
s  c;  show  that  the  length  of  the  arc  is 

2c  +  ̂ (2c-C),  very  nearly. 

This  formula  (Huyghens's)  will  give  i  of  the  circumference 
of  a  circle  of  100  feet  radius  with  an  error  of  less  than  1^  inch; 
it  gives  ̂   of  the  circumference  of  the  same  circle  with  an  error 

of  less  than  -^^  of  an  inch. 



CHAPTER  XXXIX. 

TAYLOR'S    THEOREM. 

202.  In  Ch.  XXXVIII  the  existence  of  a  power  series 
for  f(x)  or  f{h+x)  is  assumed.  We  have  now  to  consider 
under  what  circumstances  this  assumption  may  be  justified. 

203.  Theorem  of  Mean  Value.  Let  j{x)  be  a  single-valued 
function,  and  suppose  f{x)  and  its  first  derivative  }\x)  to 
be  continuous  from  x=a  to  x=b.  The  Theorem  of  Mean 
Value  asserts  that 

m-f{a) 
b—a 

-f'ixi), 
(1) 

where  xi  is  some  value  of  x  between  a  and  b. 

J 

A  C        B 

Fig.  118. 
O       A        Ci  C2 

Fig.  119. 

Let   (Fig.    118)  OA  =  a,OB=b.      If  PRQ  represents  the 

graph  of  fix)  from  x  =  ato  x  =  b,  AP  =  j(a),  BQ  =  f{b).     Hence 

'-^ — '-^  is  the  slope  of  the  straight  line  PQ.     At  some b—a 

point  R  between  P  and  Q  the  tangent  is  parallel  to  PQ,  and 

the  slope  of  the  tangent  at  R  is  /'(^i),  where  Xi  =  OC. 
Hence  the  equality  stated  in  (1).  It  should  be  noticed 

(Fig.  119)  that  Xi  may  have  more  than  one  value. 
223 
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The  theorem  may  not  be  true  if,  between  x  =  a  and  x  =  b, 
fix)  (Figs.  120,  121)  or  fix)  (Figs.  122,  123)  has  a  finite 
or  infinite  discontinuity. 

Fig.  120.  Fig.  121.  Fig.  122.  Fig.  123. 

204.  If,  in  (1),  /(6)  =  /(a),  then  f  (a:i)  =  0;  i.e.,  if  fix)  and 
fix)  are  continuous  from  x  =  a  to  x=b,  and  if  /(a)  =  /(6), 
then  fix)=0  for  at  least  one  value  between  x=a  and  x  =  h. 
This  is  known  as  Rolle's  Theorem. 

205.  In  Fig.  llS\etAB=h  and  AC^dh,  0<0<l.  Then 
(1)  becomes 

fia  +  h)-fia) 
h 

or 

=  fia  +  dh), 

fia  +  h)=fia)+hfia  +  dh). 

This  may  be  regarded  as  the  beginning  of  an  expansion 

of  fia-\-h)  in  powers  of  h.  We  have  now  to  show  that  the 
expansion  may  under  certain  circumstances  be  continued 
to  three  or  more  terms. 

206.  Taylor's  Theorem.  Let  fix)  and  its  first  n  deriva- 
tives be  continuous  from  x=a  to  x=a-\-h.  Let  P  be  a 

quantity  which  is  such  that 

fia+h)-fia)-fia)h- ria) 

A2- 

/(«-!)  (a) 

2!  (n-1)! 

Consider  also  the  following  function  of  x 

rix) 

h^-^=Ph^.{2) 

fia+h)-fix)-fix)ia+h-x) 

f^^-^Hx) 

2! ia-{-h-x)^- 

(n-l)l 
(a+;l-x)^-l-P(a+;^-a;)^ (3) 
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and  let  this  be  called  F{x).    Differentiating,  we  obtain 
fM(x) 

^'i^)=--l^;^^i(^+h-x)^-^+Pn{a-^h-x)n-i.      (4) 

Since  f(x) . . .  /^"^  {x)  are  continuous  from  x=atox  =a-{-h,  so 

also  are  F{x)  and  F'{x).  Also  F{a)  =0  by  (2),  and  F{a^h)  =0 
by  (3);  hence  (§  204)  F'{x)  =0  for  some  value  a  +  (9/i  between 

a  and  a+h.     Hence,  from  (4),  p^/^^H^-K^/^)^ 71/  • 
Substituting  in  (2)  and  transposing, 

/(a+fc)=/(a)+/'(a)A+^/»2  +  . .  .+£^^/,n-i +/""(°  +  ̂̂);.n.      (5) 
n! 

Hence  if  /(a;)  and  its  first  n  derivatives  are  continuous 

from  x=a  to  x=a+hj  j{a-\-h)  can  be  expanded  into  the 

finite  series  (5).  This  is  Taylor's  Theorem.  It  is  really  a 
generalization  of  the  Theorem  of  Mean  Value.  It  should  be 
noted  that  h  is  not  necessarily  positive.  The  number  0 
>  0  and  <  1 ,  but  its  value  generally  depends  upon  a,  h, 
and  n,  as  well  as  the  form  of  the  function. 

^      ,      ,       ,,     ,           h      h'      h'              {-l)n-'hn hjx.  log  {a-{-h)  =  loga-\   ;r^  +  ;r~,~- •  •  +  "";   ^7T~- 

207.  If  X  is  written  for  a,  (5)  takes  the  form 

208.  The  remainder.  The  last  term  of  (5)  is  known  as 

Lagrange's  form  of  the  remainder  (Rn)  after  n  terms.  Another 
form  of  the  remainder  Rn  (Cauchy's),  viz., 

may  be  found  by  starting  with  Ph  instead  of  P/i"  in  (2). 
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Rn  is  the  amount  of  the  error  when  the  first  n  terms  of 

the  series  are  taken  as  the  value  of  /(a  +  /i).  Thus  for 

log  {a-\-h)   (§  206)  the  numerical  value  of  the  error  would 
fin  ^n 

lie  between  — -  and  -7 — —rr-,  the  greatest  and  least  values 

of  Rn. 

The  method  of  making  small  corrections  explained  in 
Ch.  XI  is  equivalent  to  the  use  of  the  first  two  terms  of 

Taylor's  Theorem.  In  this  case  the  error  is  therefore 
iria+dh)h^,  where  0<^<1. 

209.  Maclaurin*s  Theorem.  Taking  a=0  in  (5)  and 
writing  x  for  h,  we  have 

/W=/(0)+r(0)x+^^x2  +  . .  .+Rn,  (7) 

V7here      Rn=^-^-^x^    or     jp^n-d)»-^x^, ni  (n— 1)! 

according  as  Lagrange's  or  Cauchy's  form  is  adopted  for  the 
remainder.  (7)  is  the  statement  of  Maclaurin's  Theorem. 
The  expansion  is  therefore  possible  if  f{x)  and  its  first  n 
derivatives  are  continuous  from  x=0  up  to  the  value  of  x 
adopted  in  the  series. 

210.  Maclaurin's  Series.  Taylor's  Series.  If  f(x)  can  be 
expanded  by  means  of  the  series  (7),  and  if  the  values  of  x 

are  such  that  ;£„=«  ̂ n=0,  then 

}{x)=m+rio)x+^^x^+..., 
or  j{x)  is  equal  to  the  limit  of  the  sum  of  the  terms  of   an 

infinite  power  series  (Maclaurin's  Series). 
Under  similar  conditions  we,  obtain  from  (5) 

fia+h)=f(a)-^r{a)h-^f^h^+  . . . , 

which  is  Taylor's  Series. 
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Ex.  1 .  From  (7)  sin  a;  =  a:  -  _~  +—-...  +  Rn,  where  Rn  (Lagrange's 

Ox  +  n-)—-.     Now  — r  =  T- .  ?r  •  ̂   •  •  • )  and  each  frac- 2/  n\  n!      1     2     3 

tion  after  a  certain  point  is  numerically  <1,  hence  the  limit  of  the 

product  =  0  forn  =  Go.     Also   sinldx  +  n—)    remains    finite    as  n 

increases,  since  it  cannot  be  >1  or   <-l.    Thus  £n=(X)  ■R»  =  0 
for  all  values  of  x.     Hence,  for  all  values  of  x, 

x^    x^ 
X^        X 

Similarly,  cos  x  =  1  —  —  +—  — . .  .  for  all  values  of  x, 

2.  log  (l+a;)  =  a;—  -+  --.  .  .  +  Rn,  where  Rn  (Cauchy's  form) 2        o 

(  -  1)^-H1  -  0)n-^X"'       (  -  1)«- VI  -d\n 
a  +  ex)^^  1-0  \i^^ 

X 

But    l-e\<\-  +  d    if    -l<x<l.     Also   l-Q    remains    finite. 
'       X  ~ 

Hence,  for  these  values  of  x, 

£n=ooRn  =  0,      and      log  (l+x)  =  a;-  — +— - 

For  all  other  values  of  x  the  series  is  non-convergent  (§196)  and 
hence  cannot  represent  the  function. 

x^     x^ 3.  Show  that  e^  =  1  +a; +—+—  +  ...  for  all  values  of  x. 



CHAPTER  XL. 

FOURIER'S  SERIES. 

211.  (a)  A  function  f{x)  may  be  developed  into  an  infinite 
series  of  the  form 

A+ai  cos  x-\-a2  cos  2x+  ...  +a„  cos  nx+  ,  .  . ,      (1) 

consisting  of  a  constant  term  A,  and  cosines  of  x  and  mul- 
tiples of  x,  with  constant  coefficients  aj,  (22,  .  .  .  For  any 

value  of  X  from  x^O  to  a;=7r  the  series  will  represent  the 
function,  i.e.,  the  limit  of  the  sum  of  the  terms  of  the  series 
will  be  equal  to  the  value  of  the  function. 

(b)  j{x)  may  also  be  developed  into  a  sine  series  of  the 
form 

Qi  sin  x-\-a2  sin  2.T+  ...  +a„  sin  nx-\-  .  .  .  (2) 

and  the  series  will  represent  the  function  for  any  value  of  x 
between  0  and  n. 

(c)  j{x)  may  be  developed  into  a  sine  and  cosine  series 
of  the  form 

A-{-ai  sin  x4-a2sin  2x4-.  .  .+!>i  cos  x-\-b2  cos2x  +  .  .  .  ,    (3) 

and  the  series  will  represent  the  function  for  any  value  of  x 
between  —n  and  tz. 

Whether  the  series  represent  the  function  for  values  of  x 
other  than  those  stated  will  depend  upon  the  nature  of  the 
function. 

228 
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The  above  propositions  were  fully  investigated  for  the 
first  time  by  Fourier  (Theorie  analytique  de  la  Chaleur,  1882) 

and  the  series  are  called  Fourier's  Series. 
212.  Assuming  the  form  of  the  series  we  shall  explain  a 

method  of  calculating  the  constants.  It  will  be  necessary 
to  make  use  of  the  following  results  of  integration  which  may 
be  easily  verified  by  the  student  (see  Ch.  XXII). 

Supposing  n  and  m  to  be  integers  and  n^m,  the  follow- 
ing integrals  have  the  values  herewith  given: 

f  cos  nx  dx   

I  sin  nx  dx   

/  cos  mx  cos  nx  dx. 

I  sin  mx  sin  nx  dx . 

/  sin  mx  cos  nx  dx. 

j  cos^nx  dx   

sin^nx  dx. 

From  0  to  ;:. From  — TT  to  tc. 

0 0 

0 

0 0 

0 0 

i^ 

h^ 

213.  The  cosine  series.    Suppose 

j{x)=A-{-ai  cosa;+a2Cos  2x  +  .  .  .+anCOs  nx  +  .  .  .      (1) 

An  operation  may  be  performed  which  causes  every  term 
of  the  series  to  disappear  except  that  of  which  the  constant 
is  desired.  Multiply  (1)  by  dx  and  integrate  between  0  and  n. 
Then 

[j{x)dx=A7:,     .'.  A=-  {""fix)  dx. Jo  ^Jo 

Multiply  (1)  by  cos  nx  dx  and  integrate  between  0  and  t:. 
Then 

f(x)  cos  nx  dx^an  .  Jtt,     .'.  «n=-J  /W  COS  nx  dx. 
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Ex.  1.  hetf{x)=x.    ThenA=-rxdx  =  '^. 
2  r*  2 

Also,  an =—     X  cos  nxdx=   ^(1— cosn?:). 
J  0 

Hence,  making  n  =  1,  2,  3,  . .  . , 

x  =  -  —  (cosa;  +  —  cos3a;  +  —  cosoa;  +  .  .  .) . 

In  Fig.  124,  I,  II,  III  represent  the  graphs  of  the  first  three  terms 

fi      from  x  =  0  to  x  =  ;r,  and  AB  that 
of  their  sum.     The  hmit  oi  AB 

for  the  infinite  series  is  the  straight 

line  OC,  or  y  =  x. 
The  series  holds  from  a;  =  0  to 

x  =  7z:  for  smaller  or  greater  values 
of  X  the  series  does  not  represent 
X.  The  value  of  each  term  of 

the  series  is  unchanged  when  the 

sign  of  X  is  changed,  and  is  re- 
peated whenever  x  changes  by  the 

amount  27r.  Hence  the  graph  of 
the  series  consists  of  the  lines  of 

Fig.  125  continued  indefinitely  in 
both  directions,  or  the  equation 

Fig.  124.  of  all  these  lines  is 

2      ;r  \ cos  X  +  --  COS  3x  + . 
o 

■)• 

Fig.  125. 

The  axes  may  be  transferred  to  any  other  position  in  the  usual 

way.     Thus  to  make  the  middle  point  of  OA  the  origin,  the  a:-axis 
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being  parallel  to  that  of  the  figure,  change  y  into  y  +  ̂n,  and  x 
into  x  +  ̂7t.     The  result  is 

2/  =  -fsinx-  -  sin3x  +  .  .  A. 

rriTt     4m  /  1  „  \       , 
Since  mx  =  —   I  cosa:  +  -^  cos  3a:  +  .  .  .1 ,  the  terms  on  the 

right  represent  any  line  y=mx  through  the  origin,  x  varying  from 
0  to  TT,  and  the  equation  of  all  lines  like  those  of  Fig.  125  making 

angles  ±tan-^m  with  the  a;-axis  is 
rmt     4m  /  1         «  \ 

y^-^   (cos X  +  —  cos  3a;  + . .  . j  . 

Ill  ;r2 
2.  Making  x  =  0  in  Ex    1,  show  that  72  +  V2  +  H"2  +  •  •  •  ̂  "5"'  ̂ ^^ loo  o 

,        1111  ;r=^        ̂    1        1       1        1  7:2 
hence  that -+-+-+-3  +  ...  =  -,  and- --  +  --- +  ...  =  -. 

3.  x2  =  -^-4(cosx-— Gos2a;  +  ̂ 2  ̂ os3x-. .  .) ,  for  [-tt,  7t\* 

In  this,  as  in  all  other  cases,  the  cosine  series  of  an  even  func- 
tion (see  Ex.  12,  p.  40)  represents  the  func- 
tion for  negative  values  of  x  as  well  as 

for  positive  values.     The  graph  consists  of 

a  series  of  parabolas  of  breadth  2;:  and  ^^-n-  ̂ o  "^ 

height  Tt-"  (Fig.  126).  Fig.  126. 
2     4  /cos  2x     cos  4x  \    .     r^.    -x 

4.  smx  =  ---(Y;^  +  y-^  +  ...j,for[0,4 

sinhTTi"       ̂   /cos  x     cos  2x  ,        \  "1    .     r  .        , 
5.  cosh  x=  -^[1  -2  (Y:fY2~r+2^       *  /  J'  ̂̂ ^  L-^,  ̂ ],  and 

hence 

+  7-— ,  +  ■:— -^2  +  •  •  •  =  K^  coth  TT  - 1 ), 
1  +  12     i^_22     1+3 

+  :;   —  — .  .  .  =  ̂ (1— TT  cosechrr). 
1  +  P     1+22     1+32 

*  See  §  22. 
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2 14.  The  sine  series.   Each  of  the  cosine  expansions  gives 

on  differentiation  a  sine  expansion  of  the  form 

f{x)  =ai  sin  xi-a2  sin  2x+  .  .  .  +an  sin  nx+  .  . .        (1) 

The  series  may  be  obtained  without  reference  to  the  cosine 

series  as  follows:    Multiply  (1)  by  sin  nxdx  and  integrate 
between  0  and  n.    Then 

C^  2  f"  . 
f(x)  sin  nx  dx=an  .  Jtt,  .'.  an=—    /W  sin  nx  dx. Jo  ^Jo 

2 

Ex.1.  Let/(x)  =  l.    Herean  =  — (1— cosnTr). 

Hence 1=— (sina;+^sin3x+i  sin  5x  +  .  . . ). 

Fig.  127  represents  the  graphs  of  the  first  three  terms  and  of 

their  sum.     The  limit  of  the  latter  graph  is  O'C,  the  line  y  =  l. 
The  limit  of  the  sum  of  the  series  is  1  for  all  values  of  x  between 

0  and  7r.    Thus  the  limit  of  the  y  of  the  graph  of  the  series  for 

a;  =  0  or  n  from  inside  the  interval  is  1,  but  its  value  ior  x  =  Oot 
7t  is  0.    The  series 

4/1 
— (sin  x  +  ̂  sin  3a;  + . . .) 
TT 

represents  any   constant   h,   the   amplitudes  of  the   sine   curves 

being  ̂ h/n,  4/i/37r,  .  . .    The  complete  graph  of  the  series  con- 

II 
FiQ.  127. Fig.  128. 

sists  of  the  straight  lines  of  Fig.  128  continued  indefinite! 
both  directions,  and  the  equation  of  all  these  lines  is 

4/1 

(8ina;+isin3x  +  . . .  )• 
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Although  the  series  is  convergent,  the  series  formed  by  the 
derivatives  of  its  terms  is  non-convergent,  and  therefore  does 
not  represent  the  slope  of  the  graph  (the  derivative  of  the  func- 

tion) at  any  point. 

2.  x  =  2(sina:;-^  sin2a;  +  |  sin  3a:-.  .  .  ). 
This  represents  x  for  0<a;<7r.  Since  the  series  changes  sign 

with  X,  and  the  function  is  an  odd  /  /  / 
one,  the  series  represents  the  func-  /         /  ̂       / 
tion  for  negative  as  well  as  positive         /    -tt  /o    tt    /-iw       x 
values    of   x.     Hence    it    holds   for  ^         / 

—  7z<x<7t.     The  graph  consists  of  a  yig   129 series  of  straight  lines,  as  in  Fig.  129. 
_  4/2  sin  2a:     4  sin  4a:  \     ,     . 

^- ''°^^=;r(T:3-+-3:5-+- ■  •) '  f'"' ]"' "t- 
Draw  the  graph. 

-—sm  2a: -—sin  4a:-.  .  .    ,  for  [0,  ;:[. 

5.  From  Ex.  4  show  that  p-^+^--  •  .  =  ̂. 
6.  Show  that 

—  =  sin  a:  +^  sin  3a:  4-i  sin  5a:  + .  .  . ,     for     ]0,  7i[, 

—  =  cosa:  — |cos3a;  +  icos5a:  — .  .  . ,     for        "o"?  tt    • 

215.  The  function  represented  by  a  Fourier  series  need 
not  be  a  single  function  throughout  the  range  n  of  the  value 

of  x]  the  same  series  may  represent  one  function  for  a  part 
of  the  range  and  one  or  more  other  functions  for  the  remainder 
of  the  range. 

Let  /i(a:)  =A+ai  cos  a:+«2  cos  2a:+  .  .  .  (1) 

for     x=Q  to  x=a,     and 

/2(a;)  =A+ai  cos  a:+a2  cos  2a;  +  .  .  .  (2) 
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(the  same  series)  for  x=a  to  x=7r.  Multiply  (1)  by  dx 
and  integrate  between  0  and  a,  also  multiply  (2)  by  dx 
and  integrate  between  a  and  n,  and  add  the  results.  Then 
each  term  of  the  series  is,  on  the  whole,  integrated  between 
0  and  Tz,    Hence 

]y{x)dx-\-\  f2ix)dx  =  A7:, 

,'.  A  =^[J"/i  W  dx+^''f2(x)  dx']. 

Similarly, ««  =— M  /i  W  <^os  na:  c?a:  +     J2{x)  cos  nx  dx  I 

for  the  cosine  series,  and 

an  =—\      /i (x)  sin  na:  c?a;  +     f2ix)  sin  nx  dx 

for  the  sine  series. 

The  series  may  not  hold  at  the  point  or  points  where 
the  change  of  function  occurs. 

It  may  be  noticed  that  A  in  the  cosine  series  is  always 
equal  to  the  mean  height  of  the  graph  from  x=0  to  x=7r. 

2  *^  2 

Fig.  130.* 

Ex.  1.  To  find  a  cosine  series  which  =1  for  0<a:<^7r,  and  =0 
for  ̂ i:<x<7:. 

A=^,     and    On  =  —      cos  nxdx  =  —  sin  tt  • 2'  ;:  nn         2 

J  0 

Hence  the  series  is 

1     2 
— +-(cosa:-i  cos3a;  +  i  cos5ar-.  .  .  ). 

*The  electrician's  make-and-break  curve. 
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It  is  true  when  x  =  0  and  x  =  7z,  but  =  ̂   when  x  =  ̂ n. 
2.  Find  a  sine  series  for  the  same. 

Ans z  /sin  X  ,  2  sin  2x     sin  Sx     sin  5a;     2  sin  Qx    sin  7a;  \ 

1      2 
=  2  +-(sin2a;  +  ̂ sin6x+isin  10a;  +  .  .  .  ). 

(See  §  214,  Ex.  6.) 

216.  The  cosine  and  sine  series.     For  values  of  x  between 

—  7r  and  tt, 

f{x)=A+ai  cos  x  +  .  .  .  +««  cos  nx  +  .  .  .  +61  sina:  +  .  .  . 
-\-bnSinnx  +  .  .  . 

It  is  easily  shown,  as  in   §  213,  that  the  constants  may 
be  determined  as  follows: 

A  =— -       f(x)  dx,     an=—\     j{x)  cos  nx  dx, 

1    f'^ 

bn=—\     fix)  sin  nx  dx. 

2  sinh  -K  /I  cos  n;: 
cos  1 

••■) 

^  z  smn  It  /i  cos  n;: 
Ex.  e^  =     0+-  .  •+^ — -cosna;  +  .  . 

;:        \2  n^  +  1 
n  cos  WTT   . 

71^  +  1 Sin  na;  - 

217.  By  the  following  method  a  cosine  series  which  will 
hold  for  values  of  x  from  0  to  any  number  c  (instead  of  tz) 

may  be  obtained.  If  x=cz/7t,  rc=0  when  0=0,  and  x=c 
when  2=7r.  Hence,  in  /(x)  change  a:  into  cz/t:,  develop  in 
terms  of  z,  and  change  z  into  nx/c.  Similarly  to  obtain  a 

sine  series  for  values  of  x  between  0  and  c,  or  a  cosine  and 

sine  series  for  values  of  x  between  —c  and  c.  In  all  cases 

the  constant  term  is  equal  to  the  mean  height  of  the  graph 

(or  the  mean  value  of  the  function)  for  the  interval  in  ques- 
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tion.     In  this  way  the  series  already  obtained  may  be  adapted 
to  the  intervals  stated  below. 

T-.     ̂   c     4c  /      Kx      1         Stix         \      r«    ̂  

Ex.  1.  X  =2-^(<=o«  T  +  35  ""'  —  +  •  •  •)  '    f"'  ']• 

2.  x-  =  ---(cos---cos  — +...),    [-c,4 

3.  ;i  =— (sin  — +-sin   +  ...),  ]0,  c[. TT     \  Co  C  I     . 

2c  {  .    izx     \    .    2nx  \ 
4.  a;=— (sin   ?r  sm   ^-•••),  J  — c,  c[. t:  \        c      2  c  I 

^      It         .     TZX      \      .     Znx  ^^      _ 
5.  —  =  sin — ^TT  sin  —  +...,  JO,  c[. 4             c      6           c 

2i8.  If  a  function  of  x  is  developed  into  a  series  for  the 

interval  —  c  to  c,  and  if  the  values  of  the  function  are  repeated 

periodically  for  every  interval  2c  of  x,  the  series  will  con- 
tinue to  represent  those  values  as  x  increases  or  decreases. 

In  other  words,  the  periodic  function  of  period  2c  is  developed 
into  a  series  consisting  of  a  constant  term  and  harmonic 

functions  of  periods  2c,  2c/2,  2c/3,  etc.  Fourier's  Theorem 
is  to  the  effect  that  this  development  is  always  possible, 

the  complete  series  being  of  the  form 

.  nx  ,  2;rx  ,  ,  ,      .    ttx     .      .    2nx 
A-\-ai  cos — 4-^2  cos   f-  .  .  .+0i  sin   [-62  sin   f--  .  . , c  c  c  c 

which  is  equivalent  to 

A-^Ai  sin^— +  aij  +^2  sin(^^^ +a2J  +.  .  . , 

where  An="^ar?-\-hr?    and    a:n=tan-i(an/6n)- 
As  already  stated,  the  function  may  consist  of  distinct 

functions  for  parts  of  the  interval. 
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Examples. 

Develop  the  functions  represented  by  the  following  figures: 

2.  Fig.  B. 

3.  Fig.  C. 

5.  Fig.  E. 

6.  Fig.  F. 

.        h     4h  /       TTX     1 
A„s.---(cos-+-cos 

8h  /  .     nx      1 

;^(sm---sin 2h  /  .    Ttx     1    ,    ̂ 7ix  \ 
—  (sm   -sin —  +.  .  .) TT  \         c      2  c  J 

c 
271X 

h     h  /  .    Ttx     \    .    2ttx  \ 
—   (sin   H— sm   h.  .  .) . 
2     TT  V       c      2  c  / 

h     h  /  .    Tzx    1    .    27rx  \ 
-+-(sin  — +-sin  —  +.  .  .). 2      TT  \         c       2  c  / 

4ih  /  .    TZX    1    .    Stix         \ 
—  (sm  — +-  sin  —  +  ...). 
7t  \        c      3  c  / 

7.  Fig.  G. 

8.  Fig.  H. 

h     2h  /  .    Ttx    1 
—  ̂  —  (sin   h—  sin 
2  TZ /  .  t:X 

(sin  — 

\        c 
3t:X 

C       3 

h     2h  /       Ttx     I 

   (cos— +— ■  COS 4:     t:^  \        c      V 

c 

St:x 

h  /  .    Ttx     1    .    2Ttx 
sin /  .  Ttx 

(sin  — 

\       c 
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9.  Fig.  J.  (Parabolas.    Latus  rectum  =  2c). 
c     2c  I       Ttx     \         2Ttx  \ 
___(eos-+- cos --  +  ...). 

10.  The  displacements  of  a  slide-valve  actuated  by  a  Gooch 

link  were  measured  at  eight  intervals  each  of  45°,  and  found  to 
be  as  follows,  beginning  with  the  crank  on  the  inner  dead-centre: 

2-44,     1-65,    0,     -1-37,     -TS?,     -1-37,    0,     r65. 

Assuming  that  the  motion  of  the  valve  is  compounded  of 
two  simple  harmonic  motions,  one  of  double  the  frequency  of 
the  other,  as  represented  by  the  equation 

t/  =  A;+asin  (^  + a) +6  sin  (2<?+^), 

where  0  is  the  crank  angle,  find  the  values  of  /c,  a,  «,  6,  /?.     (Castle, 
Manual  of  Practical  Mathematics.) 

There  are  various  graphical  or  other  practical  methods  by 
which  the  coefficients  of  a  small  number  of  terms  of  a  Fourier 

series  may  be  found,  but  in  this  example  an  algebraical  solution 
will  suffice.    Assume 

y  =  k-\-ai  sin  d  +  bi  cos  d+a.^  sin  2^+62  cos  2^, 

substitute  the  given  values  of  y  for  ̂   =  0,  45°,  90°,  etc.,  and  solve 
the  equations. 

Ans.  i/  =  -14+2'16cos<?+"14cos2^, 
or  =*14-2-16sin(^+90°)+-14sin  (2^+90°). 



CHAPTER  XLI. 

APPROXIMATE  INTEGRATION.     ELLIPTIC  INTEGRALS. 

219.  Approximate   integration.     If  the  general  value  of 

f{x)  dx  cannot  be  obtained  it  may  be  possible  to  find  a 
•'  ♦ 
sufficiently  close  approximation  to  the  desired  result. 

(1)  If  j{x)  can  be  developed  into  a  rapidly  converging 

series,  the  integration  of  a  few  terms  will  give  an  approxi- 
mate value  of  the  integral. 

(2)  The  curve  y=f(x)  may  be  plotted  when  f(x)  is  given. 

Its  area  obtained  by  Simpson's  Rule  (§  131)  or  by  the  pla- 
nimeter  (Appendix,  Note  D)  will  give  an  approximate  value 

of  \f(x) dx  between  assigned  values  of  x. 

(3) y^  dx  and    y^  dx  as  well  as    \y  dx  for   a  curve  which 

has  been  drawn  mechanically  or  otherwise  can  be  obtained 
mechanically.  The  result,  although  theoretically  exact,  is 

affected  by  observation  and  instrumental  error.  On  Mechan- 
ical Integration  see  Appendix,  Note  D. 

Elliptic  Integrals. 

dO 

220.  I*— =£L=  ,     fVl  -  m2  sin26'  dO, 

d  f    ,   
J  (l+a  sin2^)V l-m2sin2(9 

dO   

1  — m2sin2^ 
239 
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are  called  elliptic  integrals  of  the  first,  second,  and  third 
class  respectively.  The  constant  m,  which  is  assumed  to  be 
not  greater  than  unity,  is  called  the  modulus  of  the  integrals. 
The  lower  limit  is  understood  to  be  0  in  each  case,  and,  the 
angle  varying  from  0  to  ̂ ,  ̂  is  called  the  amplitude  of  the 
integral.  The  integrals  are  represented  by  the  symbols 

F{m,  6),  E(m,  6),  and  n(a,  m,  ̂),  respectively;  orby  jPm(^), 
etc.  When  the  Umits  are  0  and  ̂ t:  (i.e.,  when  the  ampli- 

tude is  ̂ Tt)  the  integrals  are  said  to  be  complete. 
If  sin  d=x,  the  integrals  become 

f  dx  f    h  —  m^x^ 

and 
fc 

dx 

'+ax2)\/{l-x^){l-m2x^y 

and  they  are  complete  when  the  limits  are  0  and  1. 

22 1.  The  values  of  the  elliptic  integrals  cannot  be  expressed 
in  finite  terms,  but  may  be  approximated  to  by  infinite 
series. 

Thus  by  the  Binomial  Theorem 

^^  =(l-m2sm^d)-idd Vl-m^sin^d 

=  (l+^m^sin2^+^m^sin4g+^  '  ̂  '  ̂m^sm^O  +  .  .  .)dd, 

and  each  term  may  be  integrated  by  §  113  (see  Ex.  12  below). 
Taking  the  limits  as  0  and  i;r  we  have  (§  120)  for  the 

complete  elliptic  integral  of  the  first  class 
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Similarly  for  the  integral  of  the  second  class  we  have 

Vl-m2sin2^  dd  =  {l-  w?  sin2^)i  dd 

=  (l  -  -irfi  sin2^-  ̂ 724  sin4^-  ̂ ^^w^  sin^^- .  .  .)  dO, 
and 

^Ti      (^     \'^     1/1.3    2\2     1/1.3.5    ,\2  -I 
2Ll-(2^)    -3(274^)    -5(2-7476^)   -•••] 

for  the  complete  integral  of  the  second  class,  Eim,  ̂ n). 
Three-figure  tables  of  the  integrals  for  certain  values  of  the 

modulus  and  amplitude  are  given  at  the  end  of  this  volume,. 
It  may  be  noticed  that 

E{j),  d)  =F(0,  6)  =d  (in  radians); 

also,  Eil,  d)  =  [cos  d  dd  =sin  d, 

222.  From  the  above  expansions  and  the  integral  (§  113) 
of  sin"^  dd  it  may  be  shown  that 

E{m,  n7t±d)=2nE±E{m,  6), 
F(m,  n7r±  d)  =2nK±  F{m,  6), 

E  and  K  being  the  values  of  the  integrals  for  the  amplitude 
^7[,  and  n  being  any  integer.  Hence  a  table  of  the  elliptic 
integrals  in  which  the  amplitude  varies  from  0  to  i;r  may 
be  used  for  all  higher  values  of  the  amplitude. 

Examples. 

L  To  find  the  length  of  an  arc  of  the  ellipse  — +rr  =  l. 

The  complement  of  the  eccentric  angle  being  denoted  by  6  we 
have  x  =  asm  6,  and  y  =  b  cos  6. 

t .  dx  =  a  cos  0  do,     dy=  —h  sin  6  dd 



242  INFINITESIMAL  CALCULUS.         •     [Ch.  XLI. 

whence        ds^^dx^+dy^={a^  cos^ 6 +  h^sm^ 6)  dd^ 

=  [a'  -  {a'  - b')  sin^i?]  dO^  =  a'{l  -m'  sin^i?)  dd\ 

where  m  is  the  eccentricity  of  the  eUipse.    Hence  the  length  of 
the  eUiptic  arc  measured  from  the  end  of  the  minor  axis  is 

fflj       

a     VI  -m^  sin^^  dO  =  aE{m,  6,), 
Jo 

an  elliptic  integral  of  the  second  class.     The  length  of  the  quad- 
rant of  the  ellipse  =  aE{m,  ̂ n). 

2.  Find  the  circumference  of  the  ellipse  a:^+2?/^=2. 

Ans.  7*64. 
3.  Of  the  ellipse  3x^+4y^  =  12  find  (1)  the  length  of  the  arc 

from  x=-0  to  a;  =  l,  (2)  the  length  of  the  quadrant,  (3)  the  middle 

point  of  the  quadrant.  Ans.  r036,  2*934,  (1*36,  r27). 
4.  An  arc  of  the  lemniscate  r^  =a^  cos  26. 
From  ds^  =r^dO^  +dr^  we  have 

-r 

dd o\/l-2sin2^ 

Let  2  sin^^  =sin20.     Then 

^      a    f*.        d£_      a  ̂ /  1         N 
V^Jo^l-isin^S^     \/2     \V2       J 

an  elliptic  integral  of  the  first  class.     The  length  of  a  quadrant 
of  the  lemniscate  is  therefore 

If  ̂ =30°,  show  that  s=- 584a. 
re  dx  1/6  c\ 

5.  y  —  =— i^(— ,  sin-'T  1.     Let  a;  =6  sin  ̂ . 

6.  ,  ==- — F{   ,tan-»v    . 

7    p  dx  ^       ̂       f(       ̂         cos-^-") 
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9  A  simple  pendulum  of  length  I  oscillates  through  an  angle  /9 
on  each  side  of  the  vertical.     To  find  the  time  of  an  oscillation. 

When  the  pendulum  makes  an  angle  ̂   with  the  vertical,  the 

acceleration  —  g'sin<5^  in  the  direction  of  the  Uioiion  =d^s/dP  = 
I  d'4>/dtK 

,  d''<ji       g  •    , 

Multiply  by  2  d^  and  integrate.     Then 

\dt)        I ̂(cos  ̂ -cos  ̂ )  =-^(sin2  i/?-sin'^  ̂ <i>). 

Hence  solving  for  dt  and  integrating, 

J.    IT  p  dci> 
2\9'Jo\/sinH/?-sinH9^ 

is  the  time  of  a  half  oscillation.     Let  sin  ̂ ^=sin  ̂ /?  sin  6.     Then 
(1)  becomes 

(I  [*^  dO         ___        11 
Ms'Jo  ̂ l-sinH/?sin2^      \g    ̂       ̂^' ^  ̂ 

Hence  the  time  of  an  oscillation  is 

!^^^(si 

sin  i/?,  i;r). 

10.  Find  the  time  of  oscillation  of  a  pendulum  when  a  =60°. 
Ans.  3-372\T7^. 

Find  the  time  through  the  lower  half  of  the  motion. 

Ans.  2^|F(sin30°,  sin-'||^I)  =ri02Vz7^ 
11.  If  the  arc  s  is  small  compared  with  the  length  I,  show  that 

the  time  of  oscillation  of  a  simple  pendulum  is  approximately 

■^K'*m^ 12.  Show  that 

F{m,  6)  =  d+im^{d -sin  0  cos  d) 
+/tW*(3^-3  sin  6  cos  6-2  sin^^  cos  ̂ )+.  . ., 

E{m,  d)  =  d-lm\d-sm  6  cos  d) 
—itm*i3d-3  sin  ̂ cos  6-2  sin^^  cos  ̂ )-. . . 



CHAPTER  XLII. 

SINGULAR     FORMS. 

223.  We  have  already  seen  that  for  a  certain  value  of 
the  variable  a  function  may  assume  the  form  0/0.  The  form 
is  said  to  be  singular;  it  is  also  called  an  indeterminate  form. 

There  are  other  singular  or  indeterminate  forms,  such 

as  00/00,  0.00,  00-00,  0^  00 0,  1°°. 
A  function  in  a  singular  form  has  no  value.  Our  object 

is  to  find  the  limit  of  the  value  of  the  function  as  the  vari- 
able approaches  the  critical  value  in  question. 

224.  The  form  0/0.  The  fraction  {x—  l)/{3^—  1)  takes 
the  form  0/0  when  x  =  l.     But 

X—  1  X—  1  1 

3^-1     {x-l){x^-\-x  +  l)     x^+x  +  V 

provided  that  x— It^O.     The  last  fraction  =J  when  x  =  l, 
hence  the  given  fraction  =  J  when  x=l. 

Method  of  the  Calculus.  Let  the  fraction  be  f{x)/F{x), 

and  suppose  a  to  be  the  value  of  x  which  causes  the  frac- 
tion to  take  the  farm  0/0,  or  that  /(a)  =0  and  F{a)  =0;  also 

that  x=a-\-h,  where  /i  is  a  small  quantity  which  is  to  =0. 
Then,  assuming  the  functions  to  be  such  that  the  expansion 

of  Taylor's  Theorem  applies, 

244 
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Hence  when  /i  =  0,   i.e.,   when  a;  =  a, -the  given  fraction 

^ria)/F^ia),OT 

^F{x)     F'{a)' 

If  f{a)  and  F'{a)  are  also  0,  it  may  be  shown  in  the  same 

way  that  £j^  =F>)'         ̂ °  °^' 

^     ,    Ti^  fix)      x-l       fix)       11, 

The  work  may  be  conveniently  expressed  thus :    When  x~l, 

.    V-l    3xUi     3 

Sin  X         cos  a:  Jo     1 

^      ._l-lg(l+,)     0  _ 
J^(x)  x^  0 

^   1_ 
r{x)  ̂ "^  1+x  0  ,       ̂  - — ~  =   =—  when  x  =  y), 
F'ix)         2x         0 

1 

^  =   ^    =  1  when  X  =  0. 
F''(x)  2 

fi^-1-log  (1+a;)     ̂      ,  _ .'.  X   ^^   ^  =  lwhenx  =  0. 

225.  The  form  00  /oo  .  Let  f(x)/F(x)=cc /cc  ,  first  when 

a;  =  00.  Let  the  graphs  of  j{x)  and  F{x)  he  PQ  and  P'Q\ 
Fig.  131,  and  let  OM=x.     Let  the  limits  of  the  tangents  at 
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P  and  P'  be  the  asymptotes  AS  and  A'S'  when  x  =  oo ,  and 
let  A' A  =c.     Then  MP=f{x),  MP'  =F{x),  tan  MTP  =r{x), 

O  A' 

A  T  M 

Fig.  131. 

tanMrP'=F'(x).     Hence 

j{x)       TMrix) 

F{x)     T'MF'ixY 

But  £rM=£i^-^(i-Iw)=i 

when  A'M  =  oo .    Hence 

.m     f'(x) (1) 

Secondly,  let  j{x)/F{x)=cc  /cc   when  x  =  a.     For  x  siil)- 
stitute  a-\-\/z.     Then  2  =  00    when  x  =  a.     But  by    (1),    if 

or j{x)  _     fix) 

^F{x)     ̂ F'ix)' 
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Hence  the  result  (1)  holds  in  this  case  also.  Thus  when 

a  fraction  has  the  form  go  /oo  the  limit  of  its  value  is  found 

from  the  same  differentiations  as  when  it  has  the  form  0/0. 

log  cos  — ^  fix)       2      00 
Ex.  ~pr-r  = ,    =  —  when  x^l. 

Fix)     log(l-a:)     oo 

71  7ZX 

fix)       '2^^""^     t:       l-x      0      ̂  -r,,,  .  =   z   =  ̂   .   =  —  when  X  =  1. 
F'{x)  1  2  7tx    0 -     cot  — 

1-x  2 

But  (§224)^;^^     "^      ̂ 
2  nx     2         7c  jcx 

coty  --cosec^-^- 

=  1. 

Hence  the  given  fraction  =  1  when  x=\. 

226.  The  forms  0.00 ,  00  -00  .  A  function  which  assumes 

the  form  O.oo,  or  00-00  may,  by  an  algebraical  or  other 
change,  be  made  to  take  the  form  0/0  or  00  /oo . 

Ex.  1.  x{\  —e    ̂ )  tends  to  00  .  0  when  a:  =  00  .     The  limit  is  most 
easily  found  by  using  the  exponential  series. 

For  :r(l-6")  =  :.[l-(l-|-+^3-...)] 
=  a  — --  +.  .  .  =  a  when  x  =  co . 2x 

TCX 

2.  (1  -x)  tan  —  tends  to  the  form  0  .  00  when  x=l. 

But  it  =   — ,  which  =  —  when  x  =  \. nx  0 

cot- -1  2 

.*.  (§  224)  we  have   =—  when  x  =  l. ^*  ̂   TZ  JZX       11 
--cosec^- 
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/.  ;^(1  —x)  tan  -7c  =—  when  x^l. 

3.  — -—:   =  00—00  when  a;  =  1. 
x  —  1    log  a; 

_.   ,         X  1       a;Ioga;-a;  +  l     0 
But        '—,   =  -7   -T-j   =  -whena:  =  l, 

a:  — 1     logo:      (x  —  1)  logo;      0 

whence  (§  224)    =   ,  which  =  —  when  a:  =  l. 
1   hloga; 

X 

X  1 
A  second  differentiation  gives   -,  which  =  —  when  a;  =  1. 11  z 

x^     X 

X  1 
/.  ̂   is  the  limit  of   -— :;    when  a;=  1. a:  —  1     log  a: 

227.  The  forms  o^,  00  o^  i«.  Functions  which  assume 
these  forms  may  be  made  to  assume  the  form  0 .  00  and 

therefore  0/0  or  00  / 00  by  first  taking  logarithms. 

Ex.  1.  /(a:)  =  a:^'^««»'^^  tends  to  the  form  0«  when  a:  =  0. 

But  log  f{x)  = .   : —  .  log  a;  =  a,   : —  =  —  when  x  «  0. 
log  sm  X  log  sm  x    °o 

1_ 

Differentiati'^c  (§  225),  a   =  a   =  a  when  a:  —  0. cos  a;  X 

sin  X 

.-.  £  log  fix)  =  a.    But  *  £  log  fix)  =  log  £l{x\  .* .  £f{x)  =  e«. 
1 

2.  f{x)  =  x^~'  tends  to  the  form  1*  when  a;=  1. 

*lf  r  is  any  variable  and  £o  =  b,   (b^O),    then   (§8)  v  =  b+i- 
bil  +  i/b). 

.'.  log  V  — log6=log  (l  +  i/b),  whichiO. 
•.    ;^logV  =  log6=log;^V. 
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1  lofiT  X      0 

But  log  j{x)  =  -_  ̂   log  X  =  j^  =  -  when  a:  =  1. 

£log/(x)=-^ 

-r      1 

1,     .',  x^   ̂   =  — whena;  =  l. 

Examples. 

1.  When  x^O  show  that 

(l)?^^l,      (2)*-5!l^^i, 

(4) 

x  x 

COS  a:  — COS  mx     1—m^ 

cosx  — cosnx      1—71^ 
log  sip  2a; 

(6)   -:;   ^    =  1, log  Sin  X 
a  +  x 

(8)  a;i°s^  =  e«, 

,_-   log  sec  X    1 

(7)  a;»loga:  =  0, 

(9)  a:^  =  1. 

2.  ~, — 7-:, — z  =  0  when  x  =1. 
X^+4:X^—5 

3.  Ifa;  =  oo,     (1)  —  =  00,     (2)2^sin^  =  a. X  A 

4.  \ix  =  |,     (1)  (sin  xT''^'' =  ■—^,     (2)  sec  x  (^-x  sin  a;)  =  1. 

5.  (sin  xf^^  ̂  =  1  when  x  =0  or  ̂. 

1  +— j   =  e«  when  a:  =  00 ,  and  =  1  when  a;  =  0. 
6 

„     sec  X      cos  3a;        „     ,  n 
7.    r-  =   =  —  3  when  x~—. sec  3a;      cos  x  2 

tana;      cos  3a; .   sin  a;       /     o^/     i\     o     i,  ^ 
8.  ~   —  =   -•  -T-^=^(-3)(-l)  =  3  whena;  =  -. tan  3a;      cos  x     sin  3a;  2 

9. (e^-l)tan2a; 

C-:^0C-^^).lwhen..O. 



CHAPTER  XLIII. 

SUCCESSIVE  DIFFERENTIALS  OF  FUNCTIONS  OF  MORE 

THAN  ONE  VARIABLE.  EXTENSION  OF  TAYLOR'S 
THEOREM.  MAXIMA  AND  MINIMA  FROM  TAYLOR'S 
THEOREM. 

.  Successive  Partial  Differentials. 

228.  Suppose  u  to  be  ax^—xy^-\-y.  We  have  as  in  §  45, 
supposing  X  alone  to  vary, 

dxU  =  (3ax2—  y^)dx,  d^u  =6ax  dx^,  dx^u  =6a  Jx^,  dA  =0, 

dyU  =  (—  2xy  -\- 1  )dy,  dy^u  =  —  2x  dy^,  dy^u  =0. 

Again,  dxU  or  (Sax^—y^)  dx  contains  y  as  well  as  x,  and  we 
may  obtain  its  differential  on  the  supposition  that  y  alone 
varies.     We  then  have 

dydxU  =  —  2ydy  dx,  dy^dxU  =  —  2  dy^dx,  dyMxU  =0. 

Similarly,  dxdyU  =  —  2ydx  dy,  dxdy^u  =  —  2dx  dy^,  dxdy^u  =0. 
229.  In  comparing  these  results  it  will  be  seen  that 

dxdyU=dydxU,  dxdy^u=dy^dxUf  dxdy^u=dy^dxu; 

also,  dxdydxU=dx^dyU=dydx^u;  in  other  words,  the  succes- 
sive operations  indicated  by  dx  and  dy  may  take  place  in 

any  order. 
It  will  be  shown  that  this  is  true  generally. 
230.  Continuity  of  a  function  of  two  variables.  Let 

u=J{x,  y),  and  let  dx  and  dy  be  infinitesimal  increments  of  x 250 
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and  y.     Then  ]{x,  y)  is  continuous  at  x,  y,  if 

£i{x-\-dx,y^dy)=j{x,y), 

when  dx  and  dy  approach  the  Hmit  zero  in  any  manner 
whatever. 

If  in  Fig.  132    OA=x,  AB=y,  AD  or  BG=dx,  BH  =dy, 
and  BP=}{x,  y),  then  EQ=f(x+dx,  y+dy).     The  condition 

D     X 

of  continuity  implies  that  £EQ  =  BP  when  E  is  any  point 
near  B  in  the  plane  XOY. 

In  what  follows  it  is  assumed  that  the  functions  and 
their  derivatives  are  continuous  for  the  values  of  the  variables 
under  consideration. 

231.  Let  Jx  indicate  an  increment  produced  by  the  incre- 
ment dx  of  X,  y  being  regarded  as  constant,  Jy  having  a 

corresponding  meaning.     Then  if  u=f{x,  y),  Ax^vU=AydxU. 

For,       Jyu=f{x,  y+dy)-f{x,  y), 

JxJyU=f(x+dx,  y+dy)  —  f{x-\-dx,  y) 
-[fix,  y+dy)-j{x,  y)] 

=Jix+dx,  y-{-dy)-f{x-{-dx,  y)-f{x,  y+dy)-\-f{x,  y).     (1) 
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The  symmetry  of  the  result  shows  that  it  would  also  be 
obtained  for  AyAxU. 

Ex.  In  Fig.  132  let  u  be  the  volume  COAB  .  P.  Then  (1) 
expresses  that 

HBGE  .Q  =  FODE  .Q-CODG  .  I-FOAH  ,J  +  COAB  .  P, 

which    is    obvious    from    the    figure,    as    is    also    the    fact   that 
HBGE  .Q  is  ̂ yJxU  as  well  as  ̂ x^yu. 

232.  Since  u  and  its  derivatives  are  assumed  to  be  con- 
tinuous at  and  near  x,  y, 

AyU==dyU  +  l2 

(§  42),  where  1 2  is  an  infinitesimal  of  at  least  the  second 
order,  and 

AxAyU  =  Ax  (dyU  +  72)  =  dxdyU  +  Is , 

where  I3  is  of  least  the  third  order.     Hence 

dxdyU  _       AxAyU 

dx  dy       dxdy' 

.*.  dxdyU=dydxU. 

Hence ,  dxdy^u  =  dxdydyii  =  dydxdyU  =  dydydxU  =  dy^dxU ,  and 
similarly  for  any  combination. 

These  results  may  obviously  be  extended  to  functions  of 
any  number  of  variables. 

rjy.  .  dx^u    dy^u    dxdyU    dydxU    dxNyU      , 
The  expressions   -3-^,  -f^,    ,     .  ,    ,     ,  ,    ,  ,j    ,  etc.  are 

'  dx^     dy^    dx  dy  dy  dx   dx^dy 

frequently  written 

B^w    'b^u      'd'^u        32^        ?}^u 

3a;2'    3i/2'    'dx'dy^    dydx^    dx^dy ,  etc. 
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Ex.  1.  In  Fig.  132,  u  being  as  before  the  volume  of  OP, 

dxdyu_    A  xAyU        HBGE  .  Q 

dxdy    ̂ dxdy~^    HBGE   ' 
i.e.,  the  limit  of  the  mean  height  of  the  sohd  BQ,  which  limit 

is  BP  or  z.  Hence  dxdyu  =  zdxdy,  .'.  the  volume  =  U  <ia:  c??/  be- 

tween assigned  limits,  as  in  §  179. 

2.  Verify  that  dydxU  =  dxdyU  or  — ^-=— — -  if    (1)  u^xlogy, 

dy  dx     dxdy  °  ̂' 
(2)  u^sinxy,  (3)  u  =  tsLn-^{y/x). 

3.  If  u  =  {2x-Syy,  verify  that  dxdy^u^dy^dxU. 

4.  If  w  =  r"' sm  n^,  r^ — -+r   1 — —  =  0. 

5.  liu  =  [{a-xy  +  ib-yy  +  {c-zy]-i,  show  that 
d^U     d^u     dHi 

dx^'^dy'^^dz^^    ' 

6.  If  u  =  f{y  +  ax)+F{y-ax),  show  that  r^  =  a^ — r,  /  and  F 
dx^        dy^ 

indicating  any  continuous  functions. 

Successive  Total  Differentials. 

233.  To  find  d^u.     We  have  (§  45)  du=dxU-\-dyU,  or 

,       'du  ,       'du  ,  ,^. 

whence    d'^u  =  d  ( ̂  j  dx  +  ̂   d^x -{-dl:^]dy-\-:^  d^y. 

Find     d(^^)    and   diT—)    by   substituting   ̂ ^    and    ̂ ^ 
\dx/  ^dyJ       ̂   '^   dx  dy 

for  u  in  (1).     The  final  result  is 

d^u  may  be  found  in  a  similar  manner. 
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Ex.  If  w  =  c  is  a  plane  curve,  du  =  0  and  d^u  =  0.     If  also  d^x  =  0 
(i.e.,  if  x  is  the  independent  variable),  show  that 

dhi  /du\  2  d^u   dudu     dhi  /du\  » 

d^y_     dx^  \  y)    ~   dx  dydx  dy     dy^  ̂dx/ 
\dyJ 

Extension  of  Taylor's  Theorem. 

234.  If  in  the  formula  of  Taylor's  Theorem,  §  207,  we  write 

-^ — ,    ̂  2  ,  ...  for  f'{x),  /"(x),  . . . ,  we  obtain  as  an  equiva- 
lent form 

f{x+h)^J{xH-^h  +  -^^-^+.  .  .  (1) 

Let  J{x,  y)  be  a  function  of  x  and  y,  and  let  x  become 
x+h,y  for  the  present  remaining  unchanged.     Then,  from  (1), 

f{x+h,  y)  =  f(x,  y)+     ̂ ^    h+     ̂ ^^      ̂ ^  +  , . .        (2) 

If  now  y  becomes  y-^k,  (2)  becomes 

/(.+*,,+fc)^/(x,,  +  fc)+?^^^A+5?«|^)^^  +  ...,(3) 

and  each  term  may  be  expanded  by  Taylor's  Theorem  as 
follows,  using  u  for  /(x,  y) : 

df(x,y-\-k),        L       dy       '  *  ' J,     du,  .    d^u  ,,  .   5   h=   ^   /i  =  5-/i  +  5— ̂ /iA;  +  .  .  . , ox  ox  ox      ox  oy 

9x2        2!  3x2       21    3x2  21 ^.  +  . 



234.]  EXTENSION   OF  TAYLOR'S  THEOREM.  255 

whence  (3)  becomes 

f(x  +  h,y+k)  =  nx,y)  +  [^h+^k] 

If  D  =  7^h-\-^k,  the  form  of  (4)  is  the  same  as dx       oy 

r)2y  T)Sy 

D2     7)3 

(i+^+2T+3T  +  -->=^"»- 
A  similar  result  would  apply  to  functions  of  three  or  more 

variables. 

Ex.  1.  Euler's  theorem  on  homogeneous  functions.  Def.  A  func- 
tion u  or  f{x,y)  is  said  to  be  homogeneous  and  of  the  degree 

n  when  f{mx,my)  =  m^f{x,  y),  where  m  is  any  number.  For 

example:  2x^  +  y^,  x^-xy+y\  {x^+y^)/{x^-y^),  {x-y)/{x^+y^), 
ax^+by^. 

Letm  =  l+r.    Then 

fix  +rx,  y  +ry)  =  (1  +r)^f{x,  y). 

Expanding  the  first  member  by  Taylor's  Theorem  and  the 
second  by  the  Binomial  Theorem, 

/  du       dv\         [  3'^u     ̂        d'^u      d^u\  r^   . 

=[1  +nr  +n{n-l)  —  + . .  .]u, 

Equating  like  powers  of  r, 

du      du 
x--+y--  =  nu, dx       dy 

dx^  9x  dy        by^ 
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The  results  may  evidently  be  extended  to  higher  derivatives, 
and  to  functions  of  three  or  more  variables. 

2.  If  u  is  homogeneous,  show  that 

X — -+y   =  (n  — 1)— , 
dx^     ̂ dxdy  ^dx 

dxdy    "di/^  dy 

Maxima  and  Minima  from  Taylor's  Theorem. 

235.  By  the  aid  of  Taylor's  Theorem  we  may  verify  and 
extend  the  conclusions  of  Chapter  XVII  for  maxima  and 
minima. 

If  a  is  a  value  of  x  for  which  any  function  f(x)  is  a 
max.  or  a  min.,  and  h  any  small  quantity,  it  is  plain  thr.t 

f{a+h)—f{a)  and  f{a  —  h)—f{a)  must  have  the  same  sign. 
viz.,  +  for  a  min.  and  —  for  a  max.     Now 

f(a+h)-f{a)  =  r(a)h+r(a)^^+r(a)^^+. . . 

and     f{a-h)-m^  _//(a);,+///(a)^_////(a)|-j  +  . . . ; 

and  by  taking  h  small  enough  the  sign  of  the  right-hand  side 
will  depend  upon  that  of  the  first  term  which  does  not  vanish. 

Hence  there  cannot  be  a  max.  or  a  min.  unless  /'(a)  =  0,  and 
there  will  then  be  a  max.  if  f'{a)  is  —  and  a  min.  if  f"{a)  is  + . 
But  if  f"{o)  also  =  0,  there  cannot  be  a  max.  or  a  min.  unless 
/'"(a)  also  =  0,  and  there  will  be  a  max.  or  a  min.  according 
as  j^^^\a)  is  —  or  +.  It  will  thus  be  seen  that  there  cannot 
be  a  max.  or  a  min.  unless  the  first  derivative  which  does 

not  vanish  is  of  an  even  order,  and  that  /(a)  will  be  a  mnx. 

or  a  min.  according  as  this  derivative  is  —  or  +. 
For  a  similar  reason,  from  §  234  (4),  a  function  u  or 

f(Xf  y)  of  two  independent  variables  is  a  max.  or  a  min. 
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for  values  a  and  b  of  the  variables  if  a  and  h  satisfy  du/dx=0 
and  du/dy  =  0,  and  at  the  same  time 

3x^^'  +  2g^,"+g^A;2  (1) 

is  not  zero,  and  is  in  sign  independent  of  the  values  of  h  and 
k.    These  conditions  are  satisfied  if 

dx^dy^      \dxdy)    '^  +• 

For,  (l)^A;^H2MA;  +  Cy^2^(-4^  
+  ̂ ^P+(AC-^2),2^ 

and  .'.  has  the  same  sign  as  A  if  AC  —  B-  is  +. 
^  .^  du    ̂   du    ̂         ,  d^ud^u     i  ̂ ^u  \2  .     , 
Hence  li  ̂   =  0,  :^  =  0,  and  ;^^ :t-t^  —  ( ̂    ̂    )    is  +,  w  is 

ox         oy  ox^  oy^     \ox  oyJ 

a  max.  or  a  mm.  according  as  ̂ -^  is  —  or  + . 

Similarly  for  a  function  of  three  independent  variables 

we  must  have  'du/'dx=^,  3w/3?/=0,  3w/9^=0,  to  solve  for 
X,  y,  and  z. 

Ex   1.  u  =  x  +xy+y^+x  —  2y+4:. 
du/dx  =  2x+y  +  l,     du/dy'=x  +  2y-2. 

Putting  these  =  0  and  solving  for  x  and  y  we  get  a;=  —  |,  2/  =  l> 
which  make  u  a  min.,  viz.,  If. 

2.  The  max.  value  of  {2ax-x^){2by-y^)  is  a^6^ 
3.  The  max.  value  of  {x -l){y - l){x  +y  —  1)  is  ̂ V- 
4.  The  min.  value  of  x^+y^  —  3axy  is  —  a^. 
5.  The  max.  or  min.  value  of  ax^  +2hxy  +  by^  +  2gx  +  2fy  +c  is a  h  g 

a  h h  b  / 
^ 

h  b 

9  f  c 6.  Find  a  point  such  that  the  sum  of  the  squares  of  its  dis- 
tances from  any  number  of  given  points  (a,,  6i),  (ag,  ̂ 2)*  •  •  •  ̂ ^Y 

be  a  min.  Ans.    (  — i'a,  —^b] ,  the  centre  of  mean  position, \ii         n      I 
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7.  Given  r,  =  a,x  +  6j2/  +  c„  Tj  =  ajO:  +  bgt/ +  Cj,  .  .  . ,  show  that  the 

values  of  x  and  y  which  make  ri^  +  r2^+ra^  +  , . .  a  min.  are  ob- 
tained by  solving  the  equations 

xl{a')  +yl{ah)  +  2'(ac)  =  0, 
xl{ah)  +yl{b')  + 1  {be)  =  0. 

These  are  the  normal  equations  in  the  method  of  Least  Squares. 
8.  To  make  with  the  smallest  possible  amount  of  sheet  metal 

an  open  rectangular  box  of  given  volume,  show  that  the  length 
and  breadth  must  each  be  double  of  the  depth. 

9.  To  cut  circular  sectors  from  the  angles  of  a  triangle  so  as 
to  leave  the  greatest  area  with  a  given  perimeter,  show  that  the  radii 
must  be  equal. 



CHAPTER  XLIV. 

DIFFERENTIAL  EQUATIONS*  OF  THE  FIRST  ORDER. 

236.  A  differential  equation  is  an  equation  containing  one 
or  more  derivatives.  The  derivatives  are  usually  represented 
by  the  corresponding  differentials.. 

The  order  of  a  differential  equation  is  the  order  of  the 

highest  derivative  in  the  equation.  The  degree  of  the  equa- 
tion is  the  degree  of  the  highest  derivative  when  the  equation 

is  free  from  fractions  and  radicals  affecting  the  derivatives. 

d^y      dxi 

Ex.   T-i  +  2  ,-  +2/=0  is  of  the  second  order  and  first  degree. CiX         ctx 

/ -- j  +2  -  +?/=0  is  of  the  first  order  and  second  degree. 

Partial  differential  equations  are  those  which  contain 
partial  derivatives;  other  differential  equations  are  called 
ordinary. 

237.  Ordinary  differential  equations  frequently  appear  in 
the  statement  of  problems  in  Geometry,  Mechanics,  Physics, 
etc.,  but  for  our  present  purpose  they  may  be  supposed  to 
arise  from  the  elimination  of  constants. 

T.     .  dy  V  dy     y 
Ex.  1.  y  =  mx,  /  =  m  =  — .     .*.  3^=—. dx  X  dx     X 

This  is  a  differential  equation  of  the  first  order  obtained  by 
differentiating,    and   eliminating   the    constant   m.    It   may   be 

*  For  further  information  relating  to  differential  equatior.s  see  Mur- 
ray's Differential  Equations  (Lorgmans),  from  which  some  of  the 

examples  of  this  and  the  following  chapter  have  been  taken. 259 
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called  the  differential  equation  of  all  straight  lines  passing  through 
the  origin. 

.'.  d^y/dx^  =  0  is  the  differential  equation  of  all  straight  lines. 
Two  constants,  m  and  b,  have  been  eliminated.  The  equation  is 
of  the  second  order. 

.     ̂     dy     ̂         d^y     ̂         1     dy 

.'.  -ri  =  — ,-»  an  equation  of  the  second  order. dx^     X  dx 

The  elimination  cf  n  constants  requires  n+1  equations 
viz.,  the  original  equation  and  n  derived  equations.  Hence 
the  order  of  the  resulting  differential  equation  is  equal  to 
the  number  of  constants  eliminated. 

Eliminate  a,  h,  c  from  the  following  equations: 

4.  2/ =  ae"*^  +  6e~"*^. 
Ans. 

.  d^y/dx^  =  m^y. 
5.  y  =  asmmx  +  h  cosmx. d^y/dx^=  —m^y. 

6^  y  =  ax^+hx-\-c. d'y/dx'-=0. 

7.  2?/  =  cx'+-. c 

^(I)-^|--- 8.  y'={x-c)\ 8{dy/dxy  =  27y. 

9.  y  =  ax^+bx. ^'S-^^t-^y-'- 
238.  An  integral  or  solution  of  a  differential  equation  is  a 

relation  between  the  variables  which  satisfies  the  equation. 

Ex.  y==A  cos  X,  y  =  B8mx,y  =  A8  in  x  +  B cos x,  y  =  a  sm  {x  +  b), 

dhf 

y  =  a  cos  {x+b),  are  all  solutions  of  the  equation  -r^+y  =  0. 

The  solution  which  contains  a  number  of  arbitrary  constants 

equal  to  the  order  of  the  given  equation  is  said  to  be  a  com- 
plete integral  or  general  solviion.  Particular  solutions  are 

those  which  may  be  obtained  from  the  general  solution  by 
assigning  values  to  the  constants. 
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Separation  of  the  Variables. 

239.  In  some  cases  no  special  method  of  solution  is  re- 

quired. An  algebraical  rearrangement  of  the  terms  will 
cause  the  equation  to  take  the  form 

h{x)dx+f2(y)dy=0, 

and  each  term  may  be  integrated. 

Ex.  1.  2x^y  dy={l  +x^)dx  is  the  same  as 
'l+x\  ,      dx ^     .       n+x'\^      dx     , 

'^ydy=[~-^)dx=^-+dx. 

Hence,  integrating,        y^=  —x~^  -\-x  +  c, 
where  c  may  have  any  assigned  value  (see  §  96). 

i!,  y  dx  —  x  dy  =  dx-hx^dy,     or     — —  =  1: — . ^  ^  ^'  y-l     x^+x 

Integrating,      log  (?/  - 1)  =  log  x -log(x 4- 1)  +log  c* 
.'.  y  —  l  =  cx/{x  +  l). 

C'.  {x^  +  y'^  —  y)dx  +x  dy  =  0  is  the  same  as 

(y\  ,      xdy—ydx    ^              .            \x/ l+^\dx+ — ^-/ —  =  0,     or    dx  +   -  =  0. 
x^/                x^                                ^      /v\^ 

'(1 

Hence        x+isin-^{y/x)  =  c,     or     y  =  xt8in{c  —  x). 

4.  x^y  dy+m  dx  =  0.  Ans.  y^  =  2m/x  +  c. 

5.  {x  —  y^x)dx  +  {y  —  x'^y)dy  =  0.  x"^ +  y^  =  x^y'^+c. 
6.  X  dy^{x^+y)dx.  y  =  ̂x^  +  cx. 

7.  {x'^y-\-x)dy  +  {xy^  —  y)dx  =  ().  xy  +  \og{y/x)=^c. 
8.  y  dy={\^x^  +  y^  —  x)dx.  y^  =  2cx+c^. 

240.  The  separation  of  the  variables  is  sometimes  assisted 

by  a  substitution.     The  following  is  an  important  case. 

*  In  order  to  simplify  the  final  result  the  constant  may  be  written 
in  the  form  log  c,  or  in  any  other  form  which  permits  of  any  arbitrary 
value. 
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Homogeneous  equations.     If  the  given  equation  is  of  the 
form 

fi{x,  y)dx+f2(x,  y)dy=0, 

where  the  functions  are  homogeneous  in  x  and  y,  and  of  the 

same  degree,  let  y=vx.  In  the  new  equation  in  terms  of 
V  and  X  the  variables  will  be  separable.  In  some  cases  the 

substitution  x=vy  may  be  simpler. 

'EiX,l.  xyHy={x^  +  y^)dx.     lly  =  vx, 
v^{xdv  +  v  dx)  =  {\+v^)dx,     or     vHv  =  dx/x, 

.'.  ̂ v^  =  \ogcx,    or    y^  =  ̂ x^\ogcx. 

2.  {x^—2y^)dx  +  2xydy  =  0.  Ans.  y^=  —x^logcx. 
3.  {x^-\-y^)dx  =  2xy  dy.  y^  =  x^  +  cx. 
4.  yHx  +  x^dy  =  xy  dy.  x  =  y/\ogcy. 
5.  {x+y)dy-\-{x  —  y)dx  =  0. 

Ans.  tan-H2/A)+logV'a;'+t/^  =  c. 6.  Show  that  the  homogeneous  equation 

]Sxy  y)dx  +f2ix,  y)dy  =  0, 

or  j,{\,v)dx+U{\,v)dy  =  0 

.  dx  foil,  v)dv 
becomes  —  + ,  ,,  ̂' ,  '    \  ,, — :  =  0. X   h{i,v)-\-vi,a,v) 

7.  Show  that  an  equation  of  the  form 

Ji{^y)y  dx  ■\-J2{xy)x  dy  =  0 

can  be  integrated  by  the  substitution  y  =  v/x, 

241.  An  equation  of  the  form 

{ax+by  +  c)dx-\-(a'x-\-b'y-\-c')dy=0  (1) 

is  not  homogeneous,  but  may  be  reduced  to  a  homogeneous 
equation  by  the  method  of  the  following  example. 

Ex.1.  i3x-y-5)dx  +  {x+y  +  l)dy  =  0. 
Let  x  =  X-\-h,  y=Y  +  k.    Then,  substituting, 

{3X-Y+3h-k-5)dX  +  {X  +  Y-{-h  +  k  +  l)dY  =  0. 



241,242]  DIFFERENTIAL  EQUATIONS.  263 

Take  h  and  k  so  that  Sh-k-5  =  0  and  h+k  +  l=0.  .'.  h  =  l, 
k=  —2.     The  equation  is  now 

(3X  -  Y)dX  +  (X  +  Y)dY  =  0, 

which  is  homogeneous.     Let  Y  =  vX.     Then 

1  V 
whence,  --=tan-^  — -=  +  i  log  (3  +v^)  +log  Z  =  c. 

/.   -l.tan-^-l±^  +ilog[3(a:-l)='  +  (2/+2)2]  =  c. 
V3  V3CX-1) 

Hence  to  solve  an  equation  of  the  form  (1),  drop  the  c 

and  c',  solve  the  resulting  homogeneous  equation,  and  in  the 
result  substitute  x  —  h  for  x  and  y  —  k  for  y,  where  h  and  k 
are  the  roots  of  the  simultaneous  equations  ax  +  hy  +  c=0, 

a'x-\-b'y-\-c'^0. 

The  method  would  fail  if  a'x  +  Vy=k{ax-\-hy),  k  being 
any  constant;  but  the  equation  could  then  be  solved  by 

the  substitution  v=ax  +  hy  and  the  elimination  of  y  or  x. 

Ex.  2.  {Zx-2y-5)dx  +  (2x-Sy-5)dy  =  0. 
Ans.  {x+yY  {x  —  y  —  2)=c, 

S.{2x-y)dx-{4:X-2y-l)dy  =  0. 
Ans.  S{x-2y)+log{Sy-6x+2)  =  c. 

Exact  Differential  Equations. 

242.  The   result   of   differentiating   j{x,y)=c  or   w==c   is 

(§45) 
M  dx-\-N  dy=^Q, 

where  M='du/'dx    and     N=du/'by. 
dM      d^u  ^   dN      d^u 

Hence  -7^-=^   ^        and   ,-^-^ 
dy     dydx  dx      dxdy' 

^  ̂    32«        3%  .    dM_dN 
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Conversely,  if  M  dx+N  dy=0  is  an  equation  such  that 

dM/dy=dN/dx  the  equation  is  an  exact  differential  equa- 
tion, i.e.,  one  obtained  directly  by  differentiating  without 

further  change. 

The  a:-integral  of  M  dx  contains  all  the  terms  of  u  except 
those  which  are  independent  of  x.  Hence  to  integrate  an 

exact  equation,  integrate  M  dx  with  regard  to  x,  integrate 

with  regard  to  y  those  terms  of  N  dy  which  contain  y  only, 

and  put  the  sum  of  the  results  equal  to  a  constant. 

Ex.1.  {4:X-'^-^x^y)dx  +  {2x^-2y)dy  =  0. 
Here  dM/dy  =  Qx\     and     dN/dx  =  6x^. 
Hence  the  solution  is  x*+2x^y  —  y^  =  c. 
2.  {2-2xy-y^)dx-{x  +  yydy  =  0. 

Ans.  2x—x^y  —  xy^  —  ̂y^  =  c. 

3.  {x^+y)dx+xdy  =  0.  lx*+xy  =  c. 

243.  Integrating  factor.  After  forming  a  differential  equa- 
tion the  result  can  sometimes  be  simplified  by  dividing  by 

a  variable  factor.  Conversely,  a  differential  equation  nay 
sometimes  be  made  exact  by  multiplying  by  a  factor. 

Ex.  1.  (1  +xy)y  dx  +  (1  —xy)x  dy  =  Ois  not  exact,  since  dM/dy  = 
l+2xy  and  dN/dx  =  l—2x.  Multiplying  by  1/x^y^  the  equation 
becomes 

(—+-)dx+(—^   )dy  =  0 
\x^y     XI  \xy^     yl 

xy    y 

Here  dM/dy^  —1/x^y^  and  dN/dx=  —1/x^y^,  hence  the  equa- 
tion is  exact.    The  solution  is  therefore 

  f-logx-log  w  =  c. 

xy 

1                    y^    1 
2.  {x^+y^  +  l)dx—2xydy^0,  factor  — .      Ans.  x   =c. X  XX 

x  +  c 

1  1     "2' Z.  2{xdy+ydx)'=xydx,f&ctoT—.  y  =  ~e 
xy  X 
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244.  Linear  equations  of  the  first  order.  A  differential 

equation  is  linear  when  it  contains  the  first  power  only  of 

the  function  and  its  derivatives.  The  linear  equation  of  the 
first  order  is  of  the  form 

^+Pi/=0,     or    dy-{-Pydx=Qdx, 

/P  dx
 

vvxxv.rv.^      c*xxv^  <^   «,xv.   xxxv^v^j^^xxv^^xxu    v^x    y.  wx     vxxxo    v.vi«c*t;xwxx   ^ 

is  an  Integra ting.f actor. 

/Pdx  fpdx  fpdx 
.dy  +  y.e^        .Pdx=ey        Q  dx 

is  the  same  as  d\ye^       /  =6*^     ̂ Q  dx. 

.'.  yey      ̂   =  \e'^     ̂ Qdx-\-c. 
dy 

Hence  the  solution  oi  -i-+Py=Q  is 

y=e-f'"''(\J'"'Qdx+c). 
-.     ̂     dy     n 
Ex.  1.  -f^   y  =  e^xn. ax     X 

J  fpdx 
P  dx= -n\ogx  =  logx-'^.     :.  e^        =a:-». 

.*.  y  =  x''(\e^dx+c\  =x"(e^+c). 

^    dy    ny     a  .             ax  +  c 
2.  —+  —  =  —  .  Ans.  y^   . 

dx     X     x^  x^ 

3.  dy/dx  +  y  =  e-^.  2/  =  e-^(x  +  c). 
4:.  xdy/dx  =  2y+x  +  \.  y=-x-^  +  cx\ 

5.  dy/dx  +  y  cos  x  =  sin  X  cos  X.      y  =  sinx-l+ce~^'^^^. 

b.  2xy^^    y      X,   or     ̂ ^  ̂  

Ans.  y  =  Vcx  —  x\ogx. 
„    dy     1— 2x       ̂   «,^  ,     ._iv 
7.  -f  +   ;-2/  =  l.  y  =  xKl+ce''    ). 

dx       x^ 
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8.  {l+x^)dy={a+xy)(ix.  Ans.  y  =  ax+cVl+x^. 
^    dy 
9.  ■^+ay  =  os\nmx. dx 

Ans.  y  =—z   Aa  sin  mx—m  cos  mx)  +C€r°'^. 

245.  Bernoulli's  equation.     An  equation  of  the  form 

where  P  and  Q  are  independent  of  y,  may  be  made  linear  by 

the  substitution   -^^=2.     It  is  best  to  divide  through  by 

y^  before  substituting. 

^      .      dy  , ,  1   dw     1      1     log  a; 
Ex.1.  xf+y  =  ynogx,     or      _/+— .— =  _^. 
ax  y^  dx     X     y        X 

Let  —  =  2,  then  — ■  dy  =  dz. 

y  y'  ̂ 
^    dz     z  _     log  a; 

'  '  dx     X  X    ' 

which  is  linear.    Solving, 

z  =  logx  +  l-\-cx.    »'.  y  = 
loga:  +  l  +CX 

2.  (l-x^)  J^-xy  =  Sxy^.  Ans.  y-= — ,    . 

r^   dy  ,  ̂   I 
3-  ̂ '+xy  =  xY'  y-- dx  vTTz'  +  ce^' 

Equations  of  the  First  Order  but  not  of  the  First  Degree. 

246.  Let  dy/dx  be  called  j). 

If  p(  ssible  solve  the  equation  for  p. 

Ex.  1.  p'-(x-3?/)p-3a:i/  =  0,     or     (p-x)(p  +  32/)  =  0. 
The  equation  is  satisfied  if 

p-x  =  0,     or      ;j  +  3!/  =  0; 

i.e.,if  J--^  =  0.    Of    ̂!+32'  =  0; 
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or,  integrating,  if 

y-^x^-{-c  =  0,     or    y  +  ce-^^  =  0. 

These  equations  may  be  regarded  as  the  solutions  of  the  given 
equation,  or  they  may  be  combined  into 

{y-^x^  +  c){y  +  ce-'^)  =  0. 

2.  p^-9p  +  18  =  0.  Ans.  {y-6x  +  c){y-Sx+c)  =  0. 
3.  p'  =  ax\  S4diy  +  cy  =  27ax\ 

247.  When  it  is  not  possible  or  convenient  to  solve  for  p 

we  may  be  able  to  solve  for  y,  then,  differentiating  through- 
out and  substituting  p  dx  for  dy,  obtain  a  new  equation  in 

p  and  X  which  we  may  be  able  to  integrate  and  thus  find 

the  relation  connecting  p  and  x.  From  this  result  and-  the 
given  equation  we  may  be  able  to  eliminate  p  and  thus 
obtain  the  relation  connecting  x  and  y,  or,  if  this  elimination 

is  not  convenient  or  possible,  x  and  y  may  be  left  in  terms 

of  p  as  a  third  variable. 

Ex.  1.  p^x  —  2py+x  =  0,     or    2y  =  px+x/p. 
Differentiating,  substituting  p  dx  for  dy,  and  reducing, 

dp/p  =  dx/x,     .'.  p  =  cx. 

Hence,  substituting  in  the  given  equation,  2y  =  cx^-^ — . 

2.  p^—py  +  l=0.  Ans.  x  =  -—^+\ogp  +  c,    y  =  p  +  —. 

248.  Instead  of  solving  for  y  we  may  be  able  to  solve  for 

X,  then  differentiate  throughout  and  substitute  dy/p  for 

dx,  and  proceed  as  above. 

Ex.  1.  p'-px  +  l=0.  Ans.  x  =  p-^-,    2/  =  ip^-logp+c. 

2,  p^y+2px  =  y.  y^  =  2cx  +  c\ 
1  T>2      2 

r        r  ^       p^  2       p 
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249.  Clairaut's  equation.  Singular  solution.  The  method 
of  §  247  is  applicable  to  Clairaut's  equation, 

y=px+f(p).  (1) 

Differentiating  and  substituting  p  dx  for  dy^ 

dp[x+np)]=0. 

From  dp=0  we  have  p=c,  and  substituting  in  the  given 
equation, 

y=cx+f{c),  (2) 

the  general  solution. 

The  equation  is  also  satisfied  if  x-\-f{p)  =0,  and  eliminating 
p  from  this  and  the  given  equation  we  have  another  solution 
which  is  not  contained  in  the  general  solution  and  which 
does  not  contain  any  arbitrary  constant.  Such  a  solution 
is  called  a  singular  solution. 

The  general  solution  (2)  represents,  for  various  values  of 
c,  a  family  of  straight  lines.  The  singular  solution  represents 
the  envelope  of  these  straight  lines.  For  the  envelope  of 
the  family  of  lines  is  obtained  (§  157)  by  eliminating  c  from 

y=cx-\-f(c)     and     0=x+/'(c), 

the  same  equations  (with  c  instead  of  p)  as  those  from  which 
the  singular  solution  is  obtained. 

Ex.  1.  y  =  px-{-a/p.  The  general  solution  is  y  =  cx  +  a/c.  Also 
x+l'{p)=  0  isx-a/p^  =  0.  .'.  p^  =  a/x.  Substituting  in  the 
given  equation  we  obtain  ?/^  =  4ax,  the  singular  solution. 

2.  Find  the  singular  solution  of  y  =  px  +  p'^.    Ans.  a;^+4?/  =  0. 
3.  Find  the  general  and  singular  solutions  of 

y  =  px  +  a  vTTp^. 

Ans.  2/  =  ca;  +  avT+^,    x^-hy^  =  a^. 
4.  Solve  y= —xp+x*p^.     Leta:  =  2~'.  Ans.  y  =  c/x-\-c'^. 
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Examples. 

1.  dy/dx+y  cot  X  =  2  cos  X.  Ans.  2/  =  sinx+c  cosecic. 

2.  x'dy-^xYdx+4:dy  =  0.  y-'  =  x-2tsin-'^x+c, 
3.  p^  =  px-y.  y  =  cx-c\ 
4.  px^  +  y^  =  xy.  x  =  y{c +logx). 
5.  {2x^+4xy)dx-\-{2x^-y^)dy  =  0.  2x^  +  6x'y-y^  =  c. 
6.  px-\-y  =  xY'  y-^  =  jx^  +  cx\ 
7.  {x^-y^+2x)dx  =  2ydy.  x^-y^  =  ce-^. 
8.  {2ax  +  hy+f)dx  +  {hx+2by  +  g)dy  =  0. 

ax^+by^  +  hxy  +fx  +gy  =  c. 

9.  2xydx-\-{y^-Sx^)dy  =  0.  x^-y^  =  cyK 
10.  X  dx  dy  =  y  dx^ +2  dy^.  cx  =  c^y  +  2. 
11.  x^p^  =  2xyp  +  Sy^.  {xy  —  c){y  —  cx^)  =  0, 

12.  y^dx=  {2x'^  +  Sxy^)dy.  2xy  +  y^  =  cx. 
13.  {y-a)dx={x^+x)dy.  {x  +  l)y  =  a  +  cx. 
14.  x^{y-px)  =  p^y.    Let  y^  =  v,  x^  =  z.  y^-=cx^+c^. 
15.  Find  the  curve  in  which  the  subnormal  is  constant  and  =  a. 

The  condition  is  that  y  dy/dx  =  a. 

Ans.  The  parabola  ?/^  =  2ax+c. 
16.  Find  the  curve  in  which  the  subtangent  is  constant  and  =  a. 

Ans.  y  =  ce     . 
17.  Find  the  curve  in  which  the  perpendicular  on  the  tangent 

from  the  foot  of  the  ordinate  is  constant  and  =  a. 

Ans.  The  catenary  y^^a  cosh  {x-^c)/a. 
18.  Find  the  curve  in  which  the  area  bounded  by  the  curve, 

two  ordinates,  and  the  x-axis  is  proportional  to  the  length  of  the 
bounding  arc. 

[y  dx  =  dA  =  d{as)  =  aVdx^  +  dy'^]. 
Ans.  The  catenary  y  =  a  cosh  {x  +  c)/a. 

19.  Find  the  curve  in  which  log  s  =  x. 

Ans.  y=Ve^^  —  l—seG~^e^  +  c. 
20.  Find  the  curve  in  which  ̂   =  P  (§  136). 

Aris.  The  cardioid  r  =  c(l  — cos  6). 
21.  To  find  the  amount,  at  compound  interest  due  and  added 

to  the  principal  all  the  time,  of  a  sum  of  money  P,  in  t  years,  at 
rate  r  per  unit  per  annum. 

Let  X  be  the  amount  at  time  t.     When  the  interest  is  due  at  the 
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end  of  an  interval  ̂ t,  xrJt  =  interest  =  ̂x.    Hence  in  the  present 
^^^  xr  =  £jt^o{Jx/M)  =  dx/dt. 

Integrating,  log  a:  =  r^  +  c.  But  a:  =  P  when  i  =  0.  .-.  log  P  =  c. 
.• .  log  x  =  rt+  log  P,  or  x  =  Pe^K 

For  example,  for  5  years  at  4  per  cent  per  annum,  e''«  =  e04x5  = 
1-2214.  The  result  may  be  compared  with  l+r^=  1-2000,  the 
amount  at  simple  interest,  and  (1 +r)^=  1-2167,  the  amount  at 
compound  interest  due  yearly. 

22.  Orthogonal    trajcctoJcs.    By  giving    different    values   to  a 

in  the  equation  x^  +  y^  =  2ay  we  have 
a  family  of  circles  touching  the  x- 
axis  at  the  origin.  Let  it  be  re- 

quired to  find  another  family  of 
curves  all  of  which  cut  all  of  the 

given  curves  at  right  angles.  Such 

curves  are  called  orthogonal  trajec- 
tories of  the  given  curves. 

Differentiating    x^  +  y^  =  2ay    and 
eliminating  a  we  have 

Fig.  133. 
2xy  +  {y'-x')2,  =  0, 

the  differential  equation  of  the  given  curves.  At  a  point  {x,  y) 
where  one  of  the  required  curves  intersects  one  of  the  given  curves, 

dy/dx  of  the  given  curve  ^  —dx/dy  of  the  new  curve,  since  they 
intersect  at  right  angles.  Hence  the  differential  equation  of  the 
required  curves  is 

dx 
2xy-{y'-x')-=0, 

dy 

a  homogeneous  equation  of  which  the  solution  is 

x^  +  y^  =  cx. 

The  required  curves  are  therefore  circles  touching  the  y-axis 
at  the  origin. 

23.  Find  the  orthogonal  trajectories  of  the  family  of  parabolas 

y^  =  4ax. Ans.  The  ellipses  2a;^+ 2/'  =  c^ 
24.  Find  the  orthogonal  trajectories  of 

(1)  The  rectangular  hyperbolas  x^  —  i/^  =  a^      Ans.  xy  =  c^. 
(2)  The  straight  lines  y  =  mx. 

(3)  The  curves  y  =  ax^.  Ans.  The  conies  x^-{-ny^  =  c^. 



249.]  DIFFERENTIAL  EQUATIONS.  271 

25.  Show  that  the  differential  equation  of  the  orthogonal  tra- 
jectories of  a  family  of  curves  represented  by  a  polar  equation  is 

found  by  substituting  —rHO/dr  for  dr/dd  in  the  differential  equa- 
tion of  the  given  curves. 

26.  Find  the  orthogonal  trajectories  of  r"*  cos  mi9  =  a^. 
Ans.  r^  sin  md  =  c"^. 

27.  Find  the  curves  which  make  an  angle  45°  with  the  parabolas 
r(l  +COS  d)  =  2a.  Ans.  The  parabolas  r(l  +sin  6)  =2c. 

28.  If  £'  =  the  extraneous  electromotive  force  in  a  circuit  having 
resistance  R  and  inductance  L, 

Lf^+Ri-E,  (1) 

where  i  is  the  current  at  time  t.     The  equation  is  linear,  and  if 
E  is  constant  the  solution  is 

.    E        -ft -ft 

If  1  =  0  when  ̂   =  0,  c=-E/R. 

.    E    E  -^t 
•••  '=r'r'  ̂   • 

The  second  term  soon  becomes  very  small;  the  current  is  then 

practically  constant  and  =  E/R,  as  if  there  had  been  no  induction. 
For  an  alternating  E.M.F.  let  E  =  Emsmnt,  where  Em  is  the 

maximum  value,  and  the  time  of  a  period  is  27t/n.  The  solution 
of  (1)  is  now 

,  {R  sin  nt  —  Ln  cos  nt)+ce    ̂  
R'  +  L'n 
E  —  —  < 

""        sin  {nt  -d)-\-ce    ̂     , 
VR'+L'n' 

where  6  =  t&n.-^{Ln/R). 
In  a  short  time  the  exponential  term  becomes  very  small  and 

the  current  is  represented  by  a  harmonic  function  of  the  same 
period  as  the  E.M.F. 

0  is  the  lag  of  the  current  behind  the  voltage.  The  impedance 

(amplitude  of  voltage -h  amplitude  of  current)  is  VR^+L^n^, 



CHAPTER  XLV. 

DIFFERENTIAL  EQUATIONS  OF  THE  SECOND  ORDER. 

250.  Equations  of  the  second  order  must  contain  d^y/dx^ 
and  may  contain  dy/dx,  x,  and  y. 

We  shall  first  consider  equations  which  do  not  contain  y, 
and  then  equations  which  do  not  contain  x.  It  will  be  seen 

that  such  equations  may  be  reduced  to  equations  of  the  first 
order. 

251.  Equations  which  do  not  contain  y  directly.  Lot 

pz^dy/dx.  The  equation  will  be  reduced  to  one  of  the 
first  order  in  p  and  x. 

^      ̂     d'^y    dy  dp 

The  latter  is  a  linear  equation  of  the  first  order.     Hence,  §  244, 

p  =  e^(\e-^xdx+c\  =  -{l+x)+ce^ 

•*•  y=\pdx=  —^{1+xy  +  ce^+Ci, 

^    d'y       (dyy  ,  1  ,      ,  , 

dx^    x  dx 

d^    ̂ dy_ 
dx^    xdx 

^'  dx'     \dx) 

y= 

=  c\ogx  +  Ci • 

y= 

->'- 

y= 

c,  +  log  sec U  +  c). 

272 
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The  same  method  may  be  appUed  to  any  equation  in 

which  y  appears  only  in  two  derivatives  whose  orders  differ 

by  unity. 

Ex.  3^3-^  =  2.     First  let -^  =  5.    Ans.  y  =  j%{x  +  cy^+c,x+c^. dx^  dx^  dx' 

If  dy/dx  is  absent  as  well  as  y  we  may  integrate  directly. 

_      d'^y       ,  dy    x^  x^ 

The  s:ime  method  will  apply  to  any  equation  of  the  form 

d^y/dx'^=f{x). 

"Ex.  1.  d^y/dx^  =  sin  X.  Ans.  y  =  cos  x -{- cx^  +  c^x  +  C2. 
2.  d^y/dx^={x  +  n)e^. 

Ans.  y  =  xe^  +  CiX^-^  +  C2X^-' + .  .  .  +  cn. 
252.  Equations   which   do  not    contain  x  directly.     Let 

dy  ,,        dhf    dpdy        dp     ̂ ni  ^.^  ^-       -      <• 
-T~=P,  then  —^  =-f-  -^  =p  -J-.     The  resultmg  equation  is  of 

the  first  order  in  p  and  y. 

dn 

■a^y. 

^'y__^2,.      .-*     ^^V 
dx'  ^'  ^  dy 

.'.  ̂ p^= —^a^y^  + const.,    or  say    p^  =  a^{c^  —  y^). 
dy  ,—n   ■,  dy  - 

.*.  79  or -;— =  avc^  — V  ,     or     —  =a  dx. 
^       dx  ^'  Vc2-7/2 

.-.  s\n-^y/c  =  ax+c-^,     or     y  =  csin  {ax  +  c^). 
The  result  may  also  be  written 

y  =  A  s\nax  +  B  cos  ax, 

where  A  and  B  are  arbitrary  constants. 

2.  d'y/dx'  =  a'y. 
The  result  may  be  in  any  of  the  following  forms : 

y  =  ceax  +  Cig  -  «^,  y  =  c  sinh  ax  +  Cj  cosh  ax, 
y  =  csinh.  (ax+c,),  y  =  c  cosh  {ax  +  c^) . 

*0r    without  using  p,  multiply  by  2dy;   then      ̂ ^.^    ̂ —a^2ydy, 

.-.    (;p)   = —a^^^+ const,,  etc. 
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The  Operator  D. 

253.  Let  Dy  represent  dy/dx,  the  symbol  D  indicating  the 
operjition  of  taking  the  derivative  of  y.  If  a  is  a  constant, 

d{ay)/dx=a  dy/dx,  hence  D{ay)  =a  Dy. 

Let  D  .  Dy,  i.e.,  d^y/dx^,  be  represented  by  D^y.  Also  let 
dy/dx  — ay  or  Dy  —  ay  be  expressed  by  (D  —  a)y.  Then  D  —  a 
indicates  the  operation  of  taking  the  derivative  of  a  function 
and  subtracting  a  times  that  function.  Hence,  a  and  h 
being  constants, 

(D-b)  .  {D-a)y=D{D-a)y-h{D-a)y 
=D^y  —  aDy  —  bDyi-  aby. 

Let  this  be  written 

[D^-{a  +  b)D  +  ab]y. 

In  the  same  way  it  may  be  shown  that 

(D-a)  .  (D-b)y=[D^-(a  +  b)D  +  ab]y, 

and  hence  the  order  of  the  operations  indicated  by  D  —  a 
and  D  —  b  does  not  affect  the  result,  and  the  successive  opera- 

tions may  be  replaced  by  an  operation  which  is  indicated  by 

Z)2-(a  +  6)Z)  +  a6. 

254.  Suppose  Dy=X,  where  Z  is  a  constant  or  a  function 
of  X,  and  let  the  inverse  operation  by  which  y  is  obtained 

from  X  be  denoted  by  Z)-i.     Then  y  =D-^X.     But  dy/dx  =X. 

.'.  ?/=   X  dx-hc, 

.'.  D-^X  =  {xdx+c. 
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Again,  suppose  {D-a)y=X,  and  denote  the  operation 

inverse  to  D-a  by  (D-a)-i.  Then  y  =  {D-a)-^X.  But 
{D  —  a)y  =X  is  the  same  as  dy/dx~ay=X,  and  the  solution 
of  this  hnear  equation  is  (§  244) 

.-.  {D-a)-^X=e''^{[e-^^Xdx  +  ̂, 

If  X=0,  (D-a)-iO=ce«^. 

Ex.  1.  D-'Q  =  c,  D-'O^D-'  .D-'0  =  cx  +  c,. 
2.  D-^a  =  ax+c,  D-^a^^ax^+cx  +  Ci. 
3.  {D-a)-^h= -h/a  +  ce^^. 

4.  {D-a)-^x=   ix+—\+ce<^^. a  \       a/ 

5.  {D  —  a)-^x^,  n  a  positive  integer, 

^    ,^       \   ,    .  a  sin  wo: +m  cos  mo: 
6.  (Z>  — a)~^  sinma:=  —   ^   hce«^. 

^    ,^       .    ,  —a  cos  ma: +w  sin  mo: 
7.  {D  —  a}-^  cosmx  =   r— — ;   hce«*. 

qUX 

8.  (D  —  a)-^e«^  =   1-  ce«^  when  w  j^ a, 

and  =  xe^^  +  ce«^,  when  n  =  a. 

Linear  equation  of  the  second  order  with  constant 
coefficients. 

255.  The  equation  may  be  written 

where  ̂   and  J5  are  constants  and  X  is  a  constant  or  a  func- 
tion of  X. 
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First  suppose  X  to  be  0.    The  equation  is  now 

g+Ag+B2/=0,     or     {D^^AD  +  B)y^O, 

Put  Z)2  +  ̂ D  +  5   into   the   form  of   factors    {D-a)(D-b). 
(Since  a  and  b  would  be  the  roots  of  D^  +  AD-\-B=0  if  D 
were  a  symbol  of  quantity,  they  may  be  s:.id  to  be  the  roots 

of  the  auxiliary  equation  z^-\-Az  +  B=0.) 
The  equation  is  {D  —  a)(D  —  b)y=0. 

.-.  y  =  {D-b)-HD-a)-'^0  =  (D-b)-'^ce^^ 

=e*^  ( I  e-^^  .  ce'^'dx  +  ci)  (1) 
e  "-^ .  ce" 

,(a—b)x 

a  —  b 

Since  c/{a  —  b)  may  equal  any  constant,  it  may  be  repre- 
sented by  c. 

,'.  y=ce^  +  cie^^,  if  6?^ a.  (2) 

But  if  b  =a,  (1)  becomes  e'^^  (  c  c?a:4-  ci  j  . 

.-.  2/=e«^(cx+ci).  (3) 

If  a  r  nd  6  are  imaginary,  let  them  be  m  +  ni,  m  —  ni,  where 

i  =  V  — 1.     Then  (2)  becomes 

y  =ce^m+ni)x  4.  f.^^(m-n{)x  ̂ ^mx(^^^nix  ̂   Cie'''^) 

=e*^[c(cos  nx+i  sin  nx)  4-ci  (cos  nx—i  sin  nx)],  §  200, 
=e*^[(c  +  ci)  cos  71x4-  {ci  —  cii)  sin  nx]. 

Since  c  +  ci  and  ci  —  cii  may  equal  any  two  constants,  they 
may  be  represented  by  c  and  Ci. 

/.  y=e"^(c  cos  nx  +  Ci  sin  nx).  (4) 
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256.  Hence  to  solve  D^y+ADy  +  By=0  find  the  roots  of 

z^  +  Az  +  B=0.  If  the  roots  are  unequal  real  numbers  a 
and  b  the  solution  is 

If  the  roots  are  complex  numbers  m-\-ni,  m  —  ni, 

y  =  e^^  (c  cos  nx  +  Ci  sin  nx) . 

If  the  roots  are  equal  numbers  a,  a, 

y  =e"^{cx-{-Ci). 

Ex.  1.   -^  +  3-"-102/  =  0.       Ans.  y  =  ce'^  +  c,e-'^. CLX  (XX 

4.  -1-^+2  r+102/  =  0.  y  =  e-^{ccos3x+CiSmSx). dx^      dx 
d^y 

5.  T^  =  a^V'  V  =  ce<^^  +  CiB-'^^      or      =c  cosh  aa:+Ci  sinh  ox. 

dx^ 
6.  -r-,  =-  —  a^y.  y  =  c  cos  ax  +  Ci  sin  ax. 

dx^           ̂   ^  ' 

7.  {D^+4:D+5)y  =  0.  y  =  e-^^{c  cos  x  +  Ci  sin  x). 
8.  (Z)2+4jD+4)?/  =  0.  2/  =  e-2^(cx  +  Ci). 
9.  (i)2+4D+3)2/  =  0.  y^ce-^^  +  c^e-'^. 

10.  (D2+47)+2)?/  =  0.  2/  =  e"^'^(ce^^''  +  Cie"'^^''). 
11.  i6D'-5D-Q)y  =  0.  y  =  ce'^^+c,e-i^. 

257.  The  same  method  may  be  extended  to  higher  orders 
of  linear  equations  of  the  form 

~   \-A~ — T+-  •  .  +  Ky=0, 

the  coefficients  A  .  .  .K  being  constants.     For  every  distinct 

real  root  of  the  auxiliary  equation, 
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there  will  be  a  term  of  the  form  ce"^  in  the  solution.  If  a 

occur  twice  the  corresponding  term  will  be  e^^ {ex -\- ci) ,  and 
if  it  occur  three  times  the  corresponding  term  will  be 

€^^{cx'^-\-CiX-\-C2), 
and  so  on. 

Corresponding  to  a  pair  of  imaginary  roots  m+ni,  m—ni, 
there  will  be  a  term  e^^{c  cos  nx-\-ci  sin  nx),  and  if  the  same 
pair  occur  twice  the  corresponding  term  in  the  solution  will  be 

e^(cx  +  ci)  cos  nx+  {C2X  +  C3)  sin  nx], 
and  so  on. 

Ex.1.  {D-1){D-Syy  =  0.          Ans.  y  =  ce^  +  (c^x^  +  c^  +  C3)e^^. 
2.  (D^+4tyy  =  0.         Ans.  y={ciX+C2)  cos2x  +  {c3X +  c^)  sm2x. 
3.  {D^-4:yy  =  0.  y={c,x  +  c,)e'^  +  {c3X  +  c,)e-^^. 
4.  D^y  =  a*y.  y  =  c,ea^  +  c^erf^^  +  cz  cos  ax  +  c^  sin  ax. 
5.  {D^-^D  +  nyy  =  0. 

Ans.  y  =  e'^^[{CiX -\- C2)  cos  3x  +  (c3a;  +  cJ  sin  3a;]. 

258.  Returning  to  the  linear  equation, 

suppose  now  that  X  is  not  zero.  The  equation  is  the  same 
as 

(D-a)(D-%=X=0  +  X, 

The  first  term  is  the  solution  of  the  given  equation  when 
X  is  0.  This  therefore  forms  a  part  of  the  required  solution; 
it  is  called  the  complementary  junction,  the  rem.iinder  of  the 
solution  being  called  the  particular  integral.  The  com- 

plementary function  will  contain  two  arbitrary  constants, 
and  as  the  complete  solution  of  an  equation  of  the  second 
order  cannot  contain  more,  we  need  not  introduce  constants 
in  finding  the  particular  integral.  If  they  are  introduced 
they  will  simply  reproduce  the  complementary  function. i 
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Ex.  1.  {D^-a^)y  =  ea^.     The  c.  f.  is  ce«^  +  ce-«^.     The  p.  i.  is 

(i)-a)-K^+«)~^e«^=(Z)-a)-ie-«^  e«^  .  e^^^dx 

=  (D  -  a)-ie-«^  .  -  -  =      (Z)  -  a)-ie«^ 2a      2a 1        f 
=    ax 2a      J 

1 

Hence  the  complete  solution  is 

y  =  ce«^  +  c^e-^^  +  xe'^^/2a. 

[(Z)  +  a)-H£>-a)-^c«^    gives    -^  e«^a;--— ,e"^.     The  last  term  is 
2a  4a  ̂ 

included  in  the  c.  f.;  hence  the  results  are  equivalent.] 

6}  11      dy 

2.  -l  +  2-^+y  =  e^^.  Ans.  y  =  e-^{cx  +  c,)+^e^^. 

3.  {D^-l)y  =  5x+2.  y  =  ce^  +  c,e-^-5x~2. 
4.  {D~iyy  =  x.  y  =  e^(cx  +  Ci)+x+2. 
5.  {D-ayy  =  e(^^.  2/  =  e«^(ca:  +  Ci)+ia;V^. 
6.  {D^-4:D-{-3)y  =  x.  y  =  ce^  +  Cie^^  +  ̂x  +  t 
7.  (D2--4D  +  3)i/  =  a:e^.  2/  =  ce=^  +  Cie3^-te^(a:2+a:). 
8.  {D^  +  a^)y  =  e(^^. 

The  p.  i.  =  (Z)  +  a^■)-H^-a^■)~'e"^  i-V^^ 
QttX  (,ax  Qax 

^^^'^''*^~'a7r^)"a(l-i).«(l+i)^2^' 
.'.  i/  =  c  cos  aa:  +  Ci  sin  aa;  +  e^V^«^^' 

259.  The  last  equation,  {D"^  +  a?)y  =  e"^^ ,  may  also  be  solved as  follows: 

Differentiating,      D  (D^  +  aP)y  =ae^^, 
and  multiplying  the  given  equation  by  a  and  subtracting, 

(D-a)(D2  +  a2)^=0, 

a  linear  equation  with  the  second  member  zero.     The  solution 
of  this  equation  is 

y=c  cos  ax-\-Ci  sin  aa;+C2e«^. 
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The  first  two  terms  are  the  c  f.  of  the  given  equation; 

hence  c^e'^^  is  the  p.  i.,  where  C2  is  to  be  determined  so  that 

cief^^  may  satisfy  the  given  equation.  Substituting  C2e«^ 

for  y  in  the  given  equation  we  find  C2  =  l/2a2. 

Ex.  L  {X>''-\)y  =  x\ 
Differentiating  three  times,  DHD2-l)i/  =  0.  The  c.  f .  is 

(Z)2-l)-»0  =  ce^  +  c,e-^.  The  p.  i.  is  D-^^^c^x''^c^.^c^.  Substi- 
tuting this  for  y  in  the  given  equation  we  find  Cg  =  —  1 ,  ca  =  0,  C4  =  —  2. 

The  p.  i.  might  have  been  found  more  quickly  by  treating 

(D^  — 1)-^  as  if  it  were  developable  by  the  Binomial  Theorem. 
Thus  (D'-l)-ix'=-(l-D=')-^a:2=-(l+D2  +  _.)a:2=_ (3,2  +  2). 

2.  — ^+a^w  =  6  sin  nx.     Differentiate  twice,  eliminate  the  right- 

hand  member  and  show  that 
h 

y  =  c  cos  ax  +  c^  sm  ax  +  —   r  sm  nx. 

a^  —  n^ 
If  a  =  n,  substitute  -hx/2n  for  b/{a^-n^). 
3.  {D^-2D+5)y  =  l.  Ans.  t/  =  i+e^(c  cos  2x  +  c,  sin  2a;). 

4.  {D-iyy  =  x\  y  =  e^{cx  +  c,)+x^+4x  +  6. 
5.  (D2-2Z)+5)2/  =  sin2a:. 

y  =  tV(4  cos  2x  +  sin  2x)  +  e^{c  cos  2x  +  Cj  sin  2x). 

Change  of  Variable. 

260.  Equations  cf  the  second  order,  like  those  of  the 
first  order,  are  sometimes  made  integrable  by  a  change  of 
variable. 

Change  of  the  dependent  variable. 

„     .      A^y      dy 
Ex.  1.  x'-7^,-hx/~y  =  x\ dx^      dx 

Let  y  =  vx,  then  dy^xdv  +  vdx,  d^y  =  x  d^v+2dvdx. 
Substituting,  the  equation  becomes 

dH     Jiv 

I 
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whence  (§  251)  y  =  ̂x^  +  ex  +  CiXr-^ . 
d^v     /dv\  ̂  

2.  2/-t4+(/)    =1-     Let^/^^-y.  Ans.  y'  =  x^  +  cx  +  Ci. 

3.  d^y/dx^  =  a^x  —  b^y.     liet  a^x  —  b^y  =  v. 
Ans.  b^y  =  a^x  +  c  cos  hx  +  c^  sin  bx. 

261.  Change    of  the    independent   variable.     First  sub- 
stitute 

dx  d^y  —  dy  d^x  .  . 

for  d^y/dx^  (§  70).  The  subsequent  change  will  depend 
upon  the  quantity  which  is  to  be  the  independent  variable. 

This  may  be  y,  or  a  third  variable  z,  xor  y  being  an  assigned 
function  of  z.  It  must  be  remembered  that  the  second 

differential  of  the  independent  variable  =0. 

Substituting  (1)  for  d^y/dx^,  (2)  becomes 

dx  d'y-dy  d'x        dy     a'y  _ 

^  dx'  ̂ ^''dx^'x^'^'  ^^^ 

Let   x  =  \/z  and  take  z  as  independent  variable.     Then  dx  = 

—  dz/z"^,  d^x  =  2dz'^/z'.     Substituting  in  (3)  we  obtain 

-—  +  a^y  =  0,  whence  y  =  c  cos  az  +  Ci  sin  az. 

a  .    a 
.'.  y  =  c  cos  — +  CiSin—. X  X 

^    d^y       2x    dy  y  ^      t   . 2.  _^  +   1+ — ^_^^  =  0.     Letx  =  tan0. 
dx'     1+x'dx     a+x')'    

Ans.  y={c  +  Cix)/'^l+x^. 
d'v        /dy\  '         /dy\  ̂  

3.  -r^~^(i)    +^^{j^)    ̂ ^-     Make  2/ the  independent  variable. 

d'x 
The  equation  becomes  -r^+x==cy,  whence 

x  =  c  cos  y  +  CiSmy  +  ̂ev. 
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Ans.  2/=(sin-^a;)^  +  csin-'x+c,. 

independent  variable.  Ans.  x  =  cy  +  Ci\/l-y^. 
0.  Show  that  the  "homogeneous  linear  equation"  of  the  second 

order 

becomes  S  "^  ^"^  ~  ̂  ̂̂   "^  ̂̂   ̂  ̂̂^'^ 
(a  linear  equation  with  constant  coefficients)  by  the  substitution 
x  =  e^. 

7.  x'^  +  2x-^--2y=0.  A7is.  y  =  cx+—^, 
dx^        ax  X' 

8.  x^~,-x^^  +  y  =  \ogx.  y={cx  +  l)\ogx+CiX+2. dx'      dx 
d^y      dv 

y  =  c  cos  (log  x^)  +c,  sin  (log  x^)+\x^. 

10.  {2+xy-^-+3{2+x)^^  +  y  =  0.    Let2+a:  =  e3. dx^  dx 

Ans.  y={2-hx)-'[c\og{2-\-x)+c,]. 

Examples. 

1.  Find  the  curve  in  which  the  radius  of  curvature  R  is  equal 
to  and  in  the  same  direction  as  the  normal  A^. 

Ti  +  f-^VT 

^=   W—^~W'    '"^    N-^y^-^  =  y(l^p^)K 
dx'  ^dy 

Ans.  The  catenary  y  =  c  cosh  (a:+c,)/c. 
2.  Find  the  curve  in  which  R=  -N. 

Ans.  The  circle  (a:^-c,)^^-t/'  =  c^ 
3.  Find  the  curve  in  which  R  =  e^,  it  being  given  that  p  =  0 

whenx  =  oo.  Ans.  y  =  c-sec-^e^. 
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4.  An  elastic  string  (or  spiral  spring)  is  fixed  at  one  end  and 
hangs  vertically.  A  weight  is  attached  at  the  lower  end  and 
descends  a  distance  o  to  a  position  of  equilibrium  0.  It  is  then 
pushed  down  a  further  distance  b{<a)  and  released.  To  find  x, 
the  distance  of  the  weight  from  0,  in  terms  of  the  time  t  from 
the  instant  of  release. 

It  is  assumed  that  the  weight  of  the  string  is  negligible,  and 

that  tension  is  proportional  to  extension  (Hooke's  Law).  Hence, 
since  mass  X  acceleration  =  force,  the  differential  equation  of  the 
motion  of  the  weight  is 

d^x  a+x  d^x         a  ,  ̂ 

m^^^mg-mg-^,    or     ̂ =--x.  (1) 
The  solution  is 

x  =  c  cos  '^g/a  t  +  Ci  sin  '^g/a  t. 

When  t  =  0,  x  =  b  and  dx/dt  (the  velocity)  =  0.     Hence  c  =  b  and 

Ci  =  0.    
.*.  x  =  b  cos  ̂ g/at, 

the  required  result.  The  values  of  x  are  repeated  in  magnitude 

and  sign  after  an  interval  T  if  Vg/a{t^-T)  =  y/g/at+27c,  i.e.,  if 
T  =  2n\/a/g.  The  motion  of  which  (1)  is  the  differential  equation 
is  therefore  oscillatory  (a,simple  harmonic  motion)  and  the  periodic 

time  —  2;: Va/gf.  Notice  that  the  total  extension  of  the  string  at 
time  t  is 

a +  6  cos  \/g/at. 

5.  A  fine  chain  of  length  2a  is  placed  over  a  smooth  nail,  the 
difference  of  the  lengths  on  the  two  sides  being  2b.  Find  x,  the 
length  of  the  longer  side,  in  terms  of  the  time  t  from  the  instant 
of  release. 

The  whole  chain  is  moved  by  the  weight  of  the  difference  of 

the  two  sides;  hence,  m  being  the  mass  per  unit  length,  the  differ- 
ential equation  of  motion  is 

d^x  -       ,„         .,  d'^{x-a)     q.         , 
2am-^-^mg[x-{2a-x)]y     or     — — —  =  -{x-a). at  at  a 

Ans.  x  =  a  +  b  cosh  ̂ a/a  t. 
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Show  also  that  the  chain  will  leave  the  nail  in  time 

^/a7gcosh-^{a/b)  and  with  velocity  Vg{a^-b^)/a. 

i'lG.  134. 

6.  Damped  vibrations.  The  differential  equation  of  simple 

harmonic  motion  is  (as  in  Ex.  4)  d^x/dt^=  —a^x.  If  a  frictional 
or  other  resistance  proportional  to  the  speed  is  applied,  the  equa- 

tion is  (say) 

dt^         """^    ̂"^dt' 
where  m  is  a  positive  constant.     If  m  <  a  the  solution  is 

a;  =  e-^«(c  cosn^  +  Ci  sinnO,     or     =yle-^^  sin  (n^+B), 

where  n='\/a^—m'^,  and  A  and  B  are  arbitrary  constants.    For 
A  =  l,  B  =  0,  m  =  -3,  and  a=l'Q, 

x  =  e-''^sml-57t,     (Fig.  134). 
If  m  is  increased  the  waves  become  longer  and   flatter,  and 

when  m  =  a  the  solution  of  the  equation  is 
x  =  e-^'^^{cx  +  c,), 

which  for  c=l,,Ci  =  0,  is  the  dotted  curve  of  the  figure,  the  curve 
being  asymptotic  to  the  <-axis. 

7.  Find  the  distance  x  which  a  body  of  mass  *m  falls  from  rest 
in  time  t,  assuming  that  gravity  is  constant,  and  that  the  resist- 

ance of  the  atmosphere  varies  as  the  square  of  the  velocity. 

Let  the  resistance  be  k  when  the  velocity  =  1 .    Then 

8.  A  uniform  beam  is  fixed  horizontally  at  one  end,  loaded 
with  a  weight  iv  per  unit  length,  and  subjected  at  C,  the  centre 
of  the  free  end,  to  a  vertical  force  P  and  a  horizontal  tensile 

force  Q.  The  origin  being  at  C  and  the  x-axis  horizontal,  the 
equation  of  the  elastic  curve  is 

EI^^-Qy^-Px-^wx^ 
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where  E  and  /  are  constants  depending  upon  the  material  and 
form  of  the  beam.     Write  the  equation  in  the  form 

__  iD'-a')y=-bx-fx\ 

where  a  =  .  hr-,     o=—-,     /  =  — — . 
\Er  EV    '     2EI 

The  c.  f.  =  ce«^+Cie-«^.  The  p.  i.  can  be  found  by  the  method 
of  §  259,  but  more  quickly  by  treating  D^-a^  as  if  it  were  a  symbol 
of  quantity.    Thus 

-{D'-a')-Khx+fx')  =  '^-(l~y\hx+fx') 

bx    fx^    2/ 

a^     a^     a'^ 
To  determine  c  and  c^,  x  =  Q  when  y  =  0, 

.'.  0  =  c  +  Ci+2f/a\ 

Also,  since  the  tangent  at  the  fixed  end  is  horizontal,  dy/dx  =  0 
when  X  ==  the  length  I,  very,  nearly. 

.• .  0  =  a(ce«^  -  c,e-^l )  +  b/a^  +  2fl/a\ 

These  two  equations  may  be  solved  for  c  and  Cj. 
9.  If  Q  (Ex.  8)  acts  in  the  opposite  direction  show  that 

bx    fx'    2/ 
y  =  c  cos  ax  +  CiSm  ax +  -^ +  -—  —  —  . 

a^     a^      a* 

10.  Curve  of  pursuit.  To  find  the  path  of  a  dog  which  runs  to 
overtake  his  master,  both  moving  with  uniform  speed,  and  the 
latter  in  a  straight  line. 

Take  this  line  for  ̂ /-axis.  When  the  dog  is 
at  {x,  y)  on  the  curve,  the  distance  of  the  man 

from  the  origin  is  y—px  (the  intercept  of  the 
tangent  on  the  y-axis),  and  by  supposition, 

d{y-px)_jds 

dt  "di' 
where  k  is  a  constant  (speed  of  man -j- speed  of  dog). 

—X  dp  =  k'vl  +p2  ̂-p 



286  INFINITESIMAL  CALCULUS.  [Ch.  XLV. 

is  the  difiEerential  equation  of  the  curve.    The  solution  is 

and  =Ci+^cx^  —  cr-^\ogx,     ifA:  =  l. 

The  constants  c  and  Ci  can  be  determined  if  the  initial  condi- 
tions are  assigned. 

If  the  man  starts  from  0,  the  dog  from  any  point  A  on  the 

a:-axis  (see  figure),  and  they  meet  at  B,  show  that  the  length  of 
the  c\irve  =  AC  +  CB,  where  C  is  the  middle  point  of  OA. 
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Note  A.     Partial  Fractions. 

The  algebraical  sum  *  of  certain  fractions  being  given,  it 
is  required  to  find  the  fractions. 

Case  I.  When  the  factors  of  the  denominator  are  all  of 

the  first  degree  and  unequal. 

Ex. 
x{x-l){x+2y 

The  denominator  indicates  that  this  result  may  be  obtained  by 
the  addition  of  three  fractions  whose  denominators  are  x,  x  —  1, 
x  +  2,  respectively;  our  object  then  is  to  find  the  numerators. 
Call  them  A,  B,  Ct 

.        x'  +  Sx  +  l        A        B         C 

'  '  x{x-l){x-{-2)     x'^x-l'^x+2'  ^^^ 
Clearing  of  fractions, 

x'^3x'\-l  =  A{x-l){x  +  2)+Bx{x  +  2)+Cxix-l).  (2) 

It  is  to  be  noticed  that  (1),  and  .*.  (2),  is  to  be  an  identity 
and  therefore  true  for  all  values  of  x.  Now,  if  wc  give  any  three 
successive  arbitrary  values  to  x  in  (2),  we  shall  obtain  three 

equations  by  solving  which,  as  simultaneous  equations,  the  quan- 
tities A,  B,  C  may  be  found.  The  arbitrary  values  should,  how- 

ever, be  such  as  to  render  these  three  equations  as  easy  of  solution 

*  The  sum  is  assumed  to  be  a  prop  r  fraction  (the  numerator  of 
lower  dimensions  than  the  denominator).  If  not,  the  fraction  should 
be  reduced  to  a  mixed  quantity. 

t  The  A,  B,C  are  assumed  to  be  independent  of  x.  If  one  of  them 
contained  x  the  sum  would  not  be  a  proper  fraction. 287 
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as  possible.  A  little  inspection  will  show  that  this  will  be  accom- 
plished by  giving  x  successive  values  which  make  x,  x  —  \,  and 

x  +  2  equal  to  0,  i.e.,  by  making  x  =  0,  1,  and  —2.  We  thus  get 
from  (2), 

when    x^O,  l  =  ̂(-2),       :.A=-^', 
when    x=l,  5  =  5(3),  .*.  B  =  f; 
when     a:=-2,   -1  =  C(6),  .'.   C= -i. 

.       x'  +  Zx  +  \        -i^     I     ̂    -i 
x{x-\){x+2)      X      x-l    x  +  2 

2a;    3(a:-l)     6(a;+2) 

Case  2 .    When  the  factors  of  the  denominator  are  of  the 

first  degree,  but  two  or  more  of  them  are  equal. 

l+3a: Ex.  1, 

x{x+iy' 
The  denominator  shows  that  the  partial  fractions  have  denomi- 

nators X  and  {x  +  \y  and  (probably)  x-^l.    We  therefore  assume 

l+3x      A     ̂          C 
x{x+iy  X  x+i  (x+iy 

.'.  l+3x=-A{x  +  iy  +  Bx{x  +  l)  +  Cx. 

Ifa:  =  0,  1  =  A,  .-.  A  =  l. 
Ifx=-1,  -2=-C,    .-.  C  =  2, 

and  B  may  be  found  by  giving  any  value  other  than  0  and 

to  X,  e.g.,  if  a;  =  l  we  have  (*.*  A  =  l,  and  C  =  2), 

4=1X22  +  J5X2+2X1,     .• 
.  B=-l, 

l+3x       1        1 

x{x-\-iy^x  x+i 

2 

(a:  +  l)»* 

x+2 ABC 
Z) 

{x  +  l){x- -1)»    x  +  1    x-l  ■  (x-l)' 

'  (x-iy 

.\  x+2'='A{x-iy  +  B{x  +  l){x-iy  +  Cix  +  l){x-l)+D{x  +  l), 

lix=-l,l=A{-2y,  .-.  A=-i. 
Hx-l,  3  =  D(2),  .-.  Z>  =  |. J 
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To  get  B  and  C  give  x  any  two  arbitrary  values  other  than  1 

and  - 1 ;  thus  (remembering  that  A  and  D  are  found)  if  x  =  0, 

2  =  i  +  B-C+§    or    B-C  =  h 

and  if  a:  =  3,  25  +  C  =  0;  hence  from  these  two  equations 

x+2  1113 +  : 

(a:  +  l)(a;-l)3        8(a;  +  l)     8(x-l)     4:{x-iy    2{x-iy 

Case  3.  When  the  denominator  contains  a  quadratic 
factor  which  cannot  be  conveniently  factorized.  We  now 

assume  the  numerator  of  the  fraction  with  a  quadratic  de- 
nominator to  be  of  the  form  Ax+B.  This  is  equivalent  to 

assuming  two  fractions  with  denominators  of  the  first  de- 
gree and  constant  numerators. 

Ex. -^^=4^^+-.     .-.  l-hx==Ax'  +  Bx  +  C{l+x'), 

lix  =  0,      1  =  C,     .-.  C  =  l. 

Ifa;  =  l,      2  =  A+B  +  2,     .-.  A+B  =  0,      ]    .-.  A=-l, 

Ux=^-l,0  =  A-B+2,     .'.  A-B==-2,  }         ̂   =  1- 
1+x        -x+1     1 + 

'  *  x{l+x^)       1+X^      X 

If  the  given  denominator  had  contained  the  square  of  1  +a:', 
11-  •       1  Dx+E 

we  should  have  assumed  an  additional  term  —— — — . 

{l-\-x^y 
Be  ides  the  methods  explained  in  the  above  examples  others 

may  sometimes  be  employed  with  advantage.  For  instance, 
in  the  last  example 

l-{-x=Ax^  +  Bx+C(l  +  x^). 

Since  the  left-  and  right-hand  sides  are  to  be  identical,  the 
coefhcients  of  like  powers  of  x  on  the  two  sides  must  be  equal; 
we  .-.  have  1  =C,  1=B,  0=A-\-C,  which  give  the  same 
results  as  before. 
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Note  B.     Curve  Tracing. 

1.  In  order  to  trace  a  curve  accurately  from  its  equation 
we  must  be  able  to  express  one  of  the  coordinates  in  terms 
of  the  other,  or  both  in  terms  of  a  third  variable.  When 

the  rectangular  equation  contains  terms  of  two  degrees  only, 
we  may  substitute  mx  for  y  and  solve  for  x,  and  in  this  way 

obtain  both  x  and  y  in  terms  of  m.     See  foot-note,  p.  53. 
2.  The  following  suggestions  and  remarks  may  be  found 

useful  in  curve  tracing,  in  order  to  shorten  or  verify  the 
work. 

(I)  Examine  the  equation  for  symmetry.  When  the  equa- 
tion remains  unchanged  if  —  2/  is  substituted  for  y  the  curve 

is  synmietrical  with  reference  to  the  line  y=0  (the  x-axis), 
for  if  the  coordinates  {a,  h)  satisfy  the  equation,  (a,  —h) 
will  also  satisfy  it.  This  will  always  be  the  case  if  the  equa- 

tion contains  only  even  powers  of  y.  Similarly  the  curve 

is  symmetrical  with  reference  to  the  line  x=0  (the  i/-axis) 
if  its  equation  is  not  altered  when  x  is  changed  into  —x. 

If  the  equation  is  unaltered  by  changing  x  into  —x  and  y 
into  —y  Sit  the  same  time,  every  line  drawn  through  the 
origin  and  terminated  by  the  curve  is  bisected  by  the  origin; 

for  if  (a,  6)  satisfy  the  equation,  (  —  a,  —b)  also  satisfy  it 
and  the  origin  is  the  middle  point  of  the  line  joining  these 
points.  The  origin  is  then  called  a  centre;  e.g.,  in  the  curves 

y=x^f  y=s\nXj  etc. 
The  curve  is  symmetrical  with  reference  to  the  line  y=^x 

if  the  equation  is  unaltered  when  x  is  changed  into  y  and  y 

into  X,  e.g.,  a;3_|.2^3  =Saxy  (Fig.  28) ;  and  it  is  symmetrical  with 
reference  to  the  line  y  =  —x  if  we  can  change  y  into  —x  and 

rrinto  —t/ without  altering  the  equation,  e.g.,  'mx^  —  y^=3axy. 
If  in  polar  equations  the  substitution  oi  —0  for  6  does  not 

alter  the  equation,  the  curve  is  symmetrical  with  reference 
to, the  initial  line  (e.g.,  in  Figs.  88,  89,  90,  92);  and  if  we 

may  at  the  same  time  change  r  into  —  r  and  0  into  —0  with- 
out altering  the  equation,  the  curve  is  symmetrical  with 
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reference  to  a  line  through  the  origin  perpendicular  to  the 
initial  line  (e.g.,  in  Figs.  84,  85,  98).  The  origin  is  a  centre 

when  we  can  change  r  into  —  r  without  altering  the  equation 
(e.g.,  in  Figs.  86,  98). 

(II)  Find  the  tangents  at  the  origin  (if  the  origin  lie  on 
the  curve)  and  the  shape  of  the  curve  near  the  origin  (§§3 
and  4  below);  also,  if  possible,  the  points  of  intersection  of 
the  curve  and  the  axes,  and  the  directions  of  the  tangents 
at  these  points;  the  points  where  the  coordinates  are  maxima 
or  minima;  the  points  of  inflexion;  the  asymptotes  rectilinear 
or  curvilinear,  etc. 

(III)  No  straight  line  can  meet  a  curve  of  the  nth.  degree 
in  more  than  n  points,  and  therefore  no  tangent  in  more 

than  n  — 2  points  besides  the  point  of  contact,  no  asymptote 
in  more  than  n  —  2  points  at  a  finite  distance  and  no  line 

parallel  to  an  asymptote  in  more  than  n—1  points  at  a 
finite  distance,  no  line  through  a  double  point  in  more  than 

n  —  2  other  points,  etc. 
3.  The  work  of  tracing  a  curve  from  its  equation  is  often 

considerably  lightened  by  obtaining  a  preliminary  idea  of  the 
shape  of  the  curve  at  certain  points. 
When  the  origin  is  a  point  on  a  curve  we  can  find  the 

shape  of  the  curve  very  near  that  point  by  expanding  y 
into  a  series  of  ascending  powers  of  x.  Thus  in  Fig.  32, 

y-=±x(l-\-2x)i,  and  taking  first  the  +  sign  we  have  by 
the  Binomial  Theorem, 

y==x(l-{-x-..  .),     or     y=x  +  x^-,.. 

The  term  x  shows  that  when  x  is  very  small  (and  .*.  the 
third  and  higher  powers  of  x  may  be  neglected)  the  curve  lies 

above  its  tangent  y=x  both  when  a;  is  +  and  when  a:  is  - ; 
in  fact  the  curve  is,  for  points  near  the  origin  on  the  branch 

touching  y=x,  shaped  nearly  like  the  parabola  y=x-j-x^. 

Similarly  on  the  other  branch  y  =  -x-x^+.  .  .  ;  hence  this 
branch  lies  below  the  tangent  on  both  sides  of  the  origin. 
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Similarly  we  may  show  that  in  Fig.  34  the  curve  near  the 

origin  is  shaped  nearly  like  the  parabolas  y=x^,  y  =  -x^. 
4.  When  it  is  not  convenient  or  possible  to  express  one 

coordinate  in  terms  of  the  other  we  may  proceed  as  in  the 

following  examples: 

Ex.  1.  In  the  curve  a^{y—x){y-{-x)=  —{y^+x'^Y,  Fig.  27,  con- 
sidering first  the  branch  which  touches  y-x  =  0  (§  52)  we  divide 

by  a^{y-\-x)  and  write  the  equation  in  the  form 

For  points  near  the  origin  on  the  branch  in  question  y  is  very 
nearly  equal  to  x,  and  the  fraction  in  (1)  must  be  very  small; 
we  shall  get  an  approximation  to  its  value  by  substituting  xiov  y, 
this  gives 

2/  =  x  — 2xVa^, 

which  shows  that  the  curve  lies  below  the  tangent  when  a;  isl- 
and above  it  when  a;  is  — .  For  the  other  branch  we  write  the 

equation  in  the  form 

and  remembering  that  y  is  nearly  equal  to  -a:  we  substitute  -x 
for  y  in  the  fraction  and  get 

y=  —x+2x^/a^, 

showing  that  the  curve  lies  above  the  tangent  when  a;  is  +  and 
below  when  x  is  — . 

2.  In  the  curve  ̂ axy  =  x^ -\-if,  Fig.  28,  the  tangents  at  the 
origin  are  y  =  Q  and  x  =  0.    Writing  the  equation  in  the  form 

w  =   ^— 

^      Zax 

we  observe  that  on  the  branch  which  touches  ?/  =  0  (the  x-axis) 
y  is  nearly  0  near  the  origin,  and  substituting  this  for  y  in  the 
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fraction  gives  y^x^/3a  for  the  approximate  form  of  the  curve. For  the  other  branch 

x  =   ^ 

^ay  ' 
and  writing  0  for  x  in  the  second  member  we  get  x  =  y^'/Sa  for 
the  required  approximation.  Thus  the  curve  is  shaped  near  the 
origin  Uke  a  pair  of  parabolas. 

3.  Find  the  approximations  to  the  three  branches  of  the  curve 

ay{y-VSx){y  +  VSx)  =  x\  Fig.  36,  near  the  origin. 
Ans.  Qa{y-\/Sx)=-x\     Qa{y-\-VSx)  =  x\    Say=-x\ 

4:.  Also  oi  ay^iy-x){y+x)  =  x^,    Fig.  37. 
Ans.ay^=-x^,     2a{y-x)===x^,    2a{y+x)=-x^. 

5.  Show  from  these  approximations  that  the  radii  of  curvature 

at  the  origin  are  fa  and  it 24a  in  Fig.  36,  and  0,  ±2V2a  in  Fig.  37. 
(Of.  §  88,  Ex.  2.) 

5.  The  asymptotes  of  a  curve  may  be  obtained  by  expand- 
ing y  into  a  series  of  descending  powers  of  x  (see  §  57) .  When 

it  is  impossible  or  difficult  to  express  one  of  the  coordinates 
in  terms  of  the  other  we  may  proceed  in  a  manner  similar  to 

that  of  §  4  above,  beginning,  however,  with  the  terms  of  the 

highest  degree  instead  of  those  of  the  lowest.     (See  §  59.) 

Ex.  1 .  x^+y^  =  Saxy,  Fig.  28.  Here  x  +  yisa  factor  of  the  terms 
of  the  highest  degree,  and  we  may  write  the  equation  in  the  form 

Saxy  . 
y=-X  +  —   ■   .  (1) x^-xy  +  y- 

Now  the  infinite  branch  is  in  the  direction  of  the  line  y=  -x, 
and  therefore  when  x  is  very  large,  y  is  nearly  equal  to  -a:;  hence 
we  shall  get  an  approximation  to  the  fraction  in  (1)  by  substituting 

-xior  y;  this  gives 
y==-x-a, 

which  is  the  nearest  linear  approximation  to  the 'curve,  and  is 

therefore  the  equation  of  the  asymptote.  Writing  -x-a  for  y 
in  the  fraction  will  give  a  second  approximation,  viz., 

a' 

2,=
  
_^
_«
+-
_ 
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from  which  it  appears  that  the  curve  Ues  above  the  asymptote 
whether  x  is  +  or  — . 

2.  Find  by  this  method  the  asymptotes  of  the  following  curves: 

(1)  x^{y-x)  =  a{y^+x^).  Ans.  y  =  x  +  2a. 
(2)  xy^{y  —  x)  =  y^  —  2x^y+x^.  x  =  l,    y=l,    y  =  x  —  l. 
(3)  {x  +  2y){x-yy  =  Qa'{x+y).         x.+2y=0,    x-y=  ±2a. 

Examples. 

1.  Trace  the  following  curves:  * 

(1)  y  =  x{x'-l),         fo  y'  =  xKx-l),  (11)  x'  +  y'-=a^ 
(2)  y{x'-l)  =  x,         (7)  x'-y'  =  Saxy,  (12)  x{y-x)  =  ay\ 
(3)  y{l+x')  =  x,         (8)  x*  +  y*  =  a'xy,  (13)  x{y-xy  =  y', 
(4)  2/'-a;'(rc  +  l),        (9)  x'+y'  =  2a'xy,  (14)  a'y{x  +  y)  =  x\ 
(5)  y''==x'{x-l),  (10)  x'+y'  =  ax*, 

2.  Trace  the  following  polar  curves: 

(1)  r  =  a sin  2^,  (6)  r  =  atan(?,  (11)  r{d^-l)  =  aO, 
(2)  rsin2^  =  a,  (7)  r'  =  aW,  (12)  rd'  =  a{d^-l), 
(3)  r  =  a  sin  3^,  (8)  r  =  a6\  (13)  r(^2  4.i)^^^2^ 
(4)  rsin3^  =  a,  (9)  rO'  =  a,  (14)  r<?  =  tan  <?. 
(5)  r2  =  a2  sin  3^,  (10)  r(l  +  (9)  =  a^, 

Note  C.     Hyperbolic  Functions. 

(For  definitions  and  graphs  of  these  functions  see  Ch. 
VIII.) 

1.  The  relations  connecting  the  hyperbolic  functions  are 

similar  to  those  connecting  circular  (trigonometrical)  func- 
tions, and  are  easily  proved  by  ordinary  algebra,  etc.  Some 

of  them  are  as  follows : 

cosh  0=1,    sinhO  =  0,     tanhO  =  0,  etc. 

cosh  (—x)  =coshx, sinh  {-x)  =— sinhx,  tanh  (-x)=  —  tanhx, 
etc. 

♦Some  of  these  examples  are  taken  fiom  FroaVs  Curve  Tracing, 
to  which  the  student  is  referred  for  further  information  on  this  sub- 

ject. 
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cosh^a;  — sinh2a;  =  l,   sech2a;  =  1  —  tanh^a;,   cosech2x=coth2a; 

cosh  {x±y)  =cosh  x  cosh  ?/±smh  x  sinh  y, 

sinh  {x±y)  =sinh  x  cosh  2/ ±  cosh  x  sinh  y, 

cosh  x  +  cosh  y  =  2  cosh  K^+2/)  cosh  ̂ (x  —  y), 

cosh  re  — cosh  7/ =2  sinh  i{x  +  y)  sinh  ̂ {x  —  y), 

sinh  a;  +  sinh  2/=2  sinh  J (^  +  2/)  cosh  J(^~2/); 

sinh  a;  — sinh  y=2  cosh  i(^  +  2/)  sinh  i(^  — 2/); 

cosh  2a;=cosh2a;  +  sinh2a;, 

=  2  cosh^a:  —1  =  1  +  2  sinh^x, 

sinh  2a; = 2  sinh  x  cosh  x, 

tanha;dbtanhi/ 
tanh  (x±y)  = 

tanh  2x  = 

l±tanha;  tanh?/' 
2  tanh  a; 

1  +  tanh^a;* 
2.  The  differentials,  integrals,  etc.,  are  as  follows: 

d  sinh  X  =  cosh  x  dx,  I  cosh  a;  dx  =sinh  x. 

ci  cosh  X  =sinh  a;  da;,  sinh  x  dx  =cosh  x. 

cZ  tanh  X  =sech2a;  dx,  sech^x  dx = tanh  a;, 

d  coth  X  =- cosech2a;  dx,  cosech2a;  dx  =  - coth  x. 

d  sech  X  =  -  sech  a;  tanh  a;  dx,       sech  a;  tanh  a;  c^a;  =  -  sech  x. 

d  cosecha-  =  —  cosecha;coth  x  dx,  cosech  a;  coth  a;  c?a;=  -  cosech  x. 
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dt^nh-^^=;^-^,x\<\a, 

Ja^-a;2'  '     '  '     a  a     2a     ̂   \a-a:/ 

a    a^  —  x'^' 

X _  adx 
a    d^  —  x^ rfcoth-i-  =  -^-— 2,     a:|>|a, 

Ja2-a;2'  '     '  ̂      a  a    2a     ̂   \x-a/ ' 

,      1  _i  a;  ac^a; 
a  seen  ̂   — = 

^        a:V  a2  —  x'-^ 

JaVa2-a:2         a  a     a    ̂   \a+\/a^-x^/' 

,  ,    1  a:  a  c^a; 
a  cosech"^  — = 

a        aVa2  4-x2' 

— /  =  —  cosech"^  —  =  -  log  (   .  \ . 
JxVa2  +  x2         a  a     a    ̂   \a-\-Va  -\-x  J 

x^     x^ 

coshrr=l  +  -j  +  -  +  ... 

tanh-i  a:-  ̂   +  -3 +  5+-  •  • 

.  ,    ,  10:3     1  .3a,5     1  .3.5a;7 
sinhix=x-2  3+274  5 -2-476  7+--- 

If  i=\/-  1,  cos  IX  =  cosh  x,  sin  ix  =  i  sinh  x,  cosh  to;  =  cos  x. 
sinh  zx  =  i  sin  x. 
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3.  At  any  point  of  an  ellipse  —+^=1  (Fig.  136)  we  may Qi         0 

put  x=acosu,  y=b  sin  u,   since   cos^w+sin  t^=l.     In  this 

Fig.  136. 

case  u=2  area  AOP/ah  (see  Ex.  14,  p.  162);    it  also = the 
eccentric  angle  AOQ. x^     1/ 

At  any  point  of  a  hyperbola  ̂   —  72  =  1   (Fig.  137)  we  may 

put   x=a  cosh  u,   y=b  sinh  u,  "since   cosh^i^  — sinh^w  ̂ 1.     In 

this  case  u=2  area  AOP/ab  =log  {-+\),  (see  Ex.  14,  p.  140). 

Fig.  137. 

(»,y)' 

Fig.  138. 

If  h  =  a  the  ellipse  becomes  the  circle  x^-\-y^==a^,  and  the 
hyperbola  the  equilateral  hyperbola  x^  —  y^=a^.  Also  u  is 
in  both  cases  the  measure  of  the  area  of  the  sector  AOP 

when  ia2  is  taken  as  unit  area.    The  circular  and  hyperbolic 
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functions  may  be  defined  in  terms  of  u,  and  correspond- 
ing to 

y/a  =sin  u,    x/a = cos  u,    y/x = tan  u,    etc., 

for  the  circle,  we  have 

y/a=smh.u,    x/a=cosh.u,     y/x=tsinh.u,    etc., 

for  the  equilateral  hyperbola. 

4.  Gudermannian.  If  2;=log  tan  (i;r+i^)  or  log  (sec  ̂ + 

tan  6),  6  is  called  the  gudermannian  of  z  (gd  z)  and  z  =gd~^6. 
Since  e^=sec  ̂   +  tan  d,  .'.  e~^=sec  ^  — tan  6.  Hence 

cosh  z=sec  d,  sinh  2=tan  6,  tanh  2=sin  0,  etc.  Thus  if  d  is 
tabulated  for  values  of  z  the  hyperbolic  functions  may  be 
obtained  from  a  table  of  circular  functions. 

Differentiating  one  of  the  relations  connecting  6  and  z, 
we  obtain  dO  =sech  z  dz,  or  dz  =sec  0  dd. 

.*.  c?(gd  z)  =sech  z  dz,    and    d{gdr'^d)  =sec  d  dd. 

The  inverse  gudermannian  is  also  written  X{d)  and  called 
the  lambda  function,  i.e., 

XiO)  =log  tan  (i;r+i^)  =log  (sec  ̂ +tan  ̂ ). 

Ex.  Show  that  tanh  i2  =  tan  \d, 

5.  In  the  equilateral  hyperbola  x^— 2/2=a2,  Fig.  138,  let 
u  be,  as  in  §  3  above,  the  area  of  the  sector  AOP  in  terms 

of  \a^  as  unit  area.  From  the  foot  M  of  the  ordinate  MP 

draw  MB  tangent  to  the  circle  x^^-y"^  =a2.  Then  x/a  =cosh  u 
anct  also=sec^.  .*.  6  is  the  gudermannian  of  u.  It  may 
also  be  proved  that  (1)  MB=y,  (2)  tanh  w=  tan  .1  OP  =  sin  0, 
(3)  the  line  through  0  parallel  to  BP  bisects  both  sectors 
AOB,  AOP,  and  the  chord  AP, 
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Note  D.     Mechanical  Integration. 

1.  Sign  of  an  area.  Let  a  straight  line  AB  of  constant 

length  move  in  a  plane  to  any  other  position  A'B',  thus 
describing  or  sweeping  out  an  area.  Let  it  be  agreed  that 
any  portion  of  AB  describes  a  positive  or  a  negative  area 
according  as,  when  viewed  from  A,  it  moves  toward  the 
left  or  the  right.  Thus  the  whole  area  is  +  in  Fig.  139, 
-  in  Fig.  140,  while  in  Fig.  141,  BOB'  is  +  and  AOA'  is  -. 

Fig.  139.  Fig.  140.  Fig.  141. 

2.  Measurement  of  the  area.  AB  can  be  moved  to  any 

other  position  A'B'  (Fig.  142)  by  (1)  a  translation  to  A'D, 
during  which  the  points  in  AB  describe  straight  lines,  and 

(2)  a  rotation  about  A',  during  which  the  points  describe 
arcs  of  circles.  The  middle  point  M  of  AB  moves  first 
to  F  and  then  to  M\  Take  ME  perpendicular  to  AB. 
The  area  of  the  parallelogram  AD  =AB  .  ME,  the  area  of 

the  sector  DA'B'  =A'D .  FM';  hence  the  whole  area  = 

AB{ME  +  FM'),  i.e.,  ABXthe  total  normal  displacement  of 
its  middle  point. 

Suppose  a  wheel  to  be  attached  to  AB  at  M  with  its 
axis  in  the  direction  AB,  and  that  suitable  graduations 
record  the  number  of  revolutions  and  parts  of  a  revolution 
which  the  wheel  makes.  Let  n  be  this  number,  i.e.,  the 
change  of  reading  of  the  recording  circles  between  the  time 

of  starting  and  any  subsequent  time.  Let  c  =  the  length  of 
the   circumference  of  the  wheel;    then  en  is  the  distance 
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rolled  through  by  a  point  in  the  circumference  of  the  wheel. 
Take  h  for  the  length  oi  AB.  During  the  motion  of  transla- 

tion the  wheel  rolls  over  ME  and  slides  through  EF,  during 

the  rotation  it  rolls  over  FM'.  Hence  the  total  normal 
displacement  of  M  =cn,  and  the  total  area  described  by 
AB=hcn. 

If,  as  in  Figs.  139,  140,  141,  A  and  B  describe  curves, 

imagine  the  motion  to  be  a  combined  translation  and  rota- 
tion with  infinitesimal  displacements,  any  of  which  may 

be  negative  as  well  as  positive.  Then  the  rate  at  which  the 
area  is  described  is  6  X  rate  of  normal  displacement  of  M, 

Fig.  143. 

and  hence  the  total  resultant  area  =6X total  normal  displace- 
ment of  M  =hcn. 

3.  Consider  now  the  effect  of  putting  the  wheel  at  any 
point  L  in  AB,  Fig.  142.  The  distance  rolled  over  by  the 

wheel  is  now  LG+HU,  and  hence  the  normal  displace- 
ment of  M=cn+FM'-HU=cn+{A'F-A'H)6=cn-^hO,  if 

LM=h.  In  a  circle  (Fig.  143)  of  radius  h  draw  OP,  OP' 
parallel  to  AB,  A'W,  Then  hd=PP',  Hence  the  area 
described  by  AB=h(cn-\-PP'),  and  if  AB  moves  to  any 
new  position  to  which  OQ  is  parallel,  the  resultant  area  swept 
out  =6(cn+PQ).  If  AB  moves  about,  turns  back,  and 
finally  returns  to  its  first  position,  Q  returns  to  P  and  the 
resultant  area  =hcn,  as  if  the  wheel  were  at  M.  But  ii  AB 
makes  a  complete  revolution  and  returns  to  its  first  position 
the  resultant  area  =6  (en +2;r^). 
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4.  Closed  curves.  Let  a  straight  line  move  so  that  its 
extremities  describe  any  closed  curves.  Then  in  l11  ca^es 
the  area  swept  out  by  the  line  will  be  equal  to  the  arith- 

metical difference  of  the  areas  of  the  curves  described  by its  extremities. 

When  the  areas  are  without  one  another,  one  will  be 
described  on  the  whole  positively  and  the  other  on  the  whole 
negatively,  while  the  area  be- 

tween them,  if  swept  out  at  all, 
will  be  swept  both  positively  and 
negatively.  When  they  inter- 

sect, the  common  portion,  in  so  far 
rs  it  is  swept  at  all,  will  be  swept 

both   positively  and   negatively;  ^^" 
the  rest  as  before.  When  one  curve  lies  entirely  inside  the 
other,  the  portion  of  the  foimer  which  is  swept  at  all  will 
be  swept  both  positively  and  negatively. 

5.  Amsler's  polar  planimeter  consists  essentially  of  two 
bars,  CA,  AB,  hinged  at  A,  a  recording  wheel  being  attached 

to  AB  Sit  any  point  L.  C  is  fixed 
while  B  is  moved  round  a  curve. 
But  if  A  is  constrained  to  move 

along  any  line — ^whether  straight  or 
curved — ^without  enclosing  any  area. 

Fig.  145.  the  area  of  the  curve  traced  out  by 
B  is  equal  to  the  resultant  area 

swept  out  by  AB,  and  hence  will  be  ben  if  AB  returns  to 
its  starting  place  without  making  a  complete  revolution. 
But  if  C  lies  inside  the  curve  described  by  B,  AB  makes 
a  complete  revolution,  and  the  area  of  the  curve  described 
hyB 

= 6  (c7i+2;rA)  + circle  described  by  A 

=  6(cn+27r/i)+;ra2=6c(nH   r   j. 
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The  second  term  in  the  parentheses  is  constant  (independ- 
ent of  n)  and  should  be  engraved  on,  or  othen\ise  suppUed 

with,  the  instrument.  This  number  is  then  to  be  looked  upon 
as  a  correction  to  n  when  the  planimeter  makes  a  complete 

revolution.  27zhh-\-7za^  is  evidently  the  area  of  the  circle 
described  by  B  when  n  remains  =0,  i.e.,  when  the  instru- 

ment is  set  so  that  the  wheel  slides  without  rolling,  or  when 
the  perpendicular  from  C  on  AB  passes  through  the  wheel. 
By  sliding  the  bar  AB  through  a  sleeve  to  which  the 

hinge  and  the  wheel  are  attached,  its  length  may  be  altered 
and  the  instrument  adapted  to  different  units.  Thus  if  the 
circumference  of  the  wheel  =c  centimetres,  and  6  is  taken 
=  100/c,  6c7i  =  100n,  and  hence  the  area  is  found  in  square 
centimetres  by  multiplying  n  by  100.  Similarly  if  the 
circumference  of  the  wheel  is  c  inches  and  h  is  taken  =  10/c, 
the  area  6cn/  =  10ri  square  inches. 

6.  As  we  proceed  from  5  to  C  by  way  of  P,  Fig.  146, 

X  changes  from  OD  to  OE,  and   \ydx  is  the  area  DBPCE; 

but  if  we  proceed  from  C  to  J5  by  way  of  P',  each  element 
of  area  such  as  y  dx  is   negative  since  dx  is   negative,   and 

hence   \y  dx  is  the  area   CEDB,  but  is  negative.     Hence  if 

we  sum  the  elements  such  as  y  dx  in  the  order  of  proceeding 

clockwise  round  the  curve,  the  result  =DBPCE-DBP'CE  = 
BPCP',  the  area  of  the  curve.  Let  A  =  this  area,  M  =  the 
sum  of  the  moments  of  the  elements  of  the  area  with  respect 
to  OX,  /=the  moment  of  inertia  of  the  area  with  respect 
to  OX.    Then 

A  =  \y  dx,     M=\y  dx  .  \  =  2yf  ̂̂ >     ̂ =\y  ̂^  •  \  =^\y^dx. 

7.  Amsler's  mechanical  integrator.  In  this  instrument 
one  end  of  a  sweeping  bar  FP  traces  a  closed  curve,  while 
the  other  end  is  constrained  to  describe  a  straight  line  OX. 
Hence  this  part  of  the  instrument  is  virtually  a  planimeter, 

and  the  area  A  =  hc\n,  where  h  is  the  length  of  FP,  Ci  the  cir- 
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cumference  of  the  wheel  Wi  which  FP  carries,  and  rii  the 
change  of  reading  of  this  wheel  when  the  circuit  of  the  curve 
has  been  made.  FP  also  turns  two  arcs  of  centre  F  and 

radii  2a  and  3a,  which  turn  circles  each  of  radius  a,  the  circles 

carrying  wheels  W2  and  TF3.  The  three  wheels  roll  simul- 
taneously on  the  plane  containing  the  diagram  to  be  inte- 

grated.    When  the  axis  of  Wi  makes  an  angle  0  with  OX 

Fig.  146. 

the  axes  of  W2  and  W3  make  angles  in -20  and  Sd,  respect- 
ively, with  the  same  line. 

For  y  substitute  b  sin  d.     Then 

A  =  h  [sin  e  dx,       M  =^^62  jsin2^  dx,       7= 463  jsin3^  dx. 

Now  2  sin  (9=l-cos  2<9  =  l-sin  (j7r-2^), 

and    sin  3<9  =  3  sin  /9  -  4  mi^O,  or  sin^i^ = f  sin  ̂   -  i  sin  2,0. 

•^  M  =  \hA\\-^in  {\7z-2d)']dx=-\h  [sin  {\7t-20)dx, 

since    dx  =0  for  the  complete  circuit  of  the  curve. 

Also,  7  =46^  [(I  sin  (9- i  sin  Z0)dx 

= J63  [sin  0  dx-i^l^Uin  SO  dx. 
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But  A  =  6cini,   .*.   \sm  6  dx  =  cini,  i.e.,  when  the  axis  of  a 

wheel  makes  an  angle  6  with  OX,    sin  6  dx=cini.     But  the 

axes  of  the  other  wheels  make  angles  in— 2d  and  3^  with  OX. 

,'.    \sm  (i7c—26)dx=C2n2,    and      sin  3^  rfx    03713. 

.*.  A=6cini,    M=\l^C2n2,    I  ==\h\ini—^^^c^,nz. 
In  the  instrument  under  discussion  the  maker  has  taken 

6=2  decimetres,  Ci=  i  dec,  C2  =03  =f  dec. 

.*.  A=ni,    ilf=fn2,     /=ni-fn3. 

The  height  y  of  the  centre  of  gravity  of  the  area  above 
OX=M/A,  and  the  moment  of  inertia  with  respect  to  an 
axis  through  the  centre  of  gravity  and  parallel  to 

OX=^I-Ay^  =  I-M^/A. 
Results  may  be  changed  from  decimetres  to  inches  by 

multiplying  y  by  a,  A  by  a^,  M  by  a^,  and  /  by  a^,  where 
a  =  3*937,  the  number  of  inches  in  a  decimetre;  a2  =  15*500, 
a3  =  61-023,  a4  =  240-290. 



MISCELLANEOUS  EXAMPLES. 

1.  Prove  Leibnitz's  theorem  for  the  nth  differential  of  a  product: 
Tl  (tI  —  11 

d^iuv)  =  {d^u)v  +  nd'^-^u  dv+ — — — d'^-^ud^v  +  . .  .+ud^v, 

[By  induction  from  d(uv)  =v  du-Vu  dvi\ 

2.  If  2/'  =  «'  +2x1/,  d^y/dx^  =aV{y-xy  and  dWdy^  =  -aVy^, 

3.  The  maximum  value  of  (  — ]     =1*202. 

4.  Show  that  the  turning  points  of  the  curve  y=smxr-^  are 
where  a;=2/(n7:),  n  being  any  odd  integer.  (The  number  when 
x=0  from  any  assigned  value  is  therefore  infinite.) 

5.  Given  the  volume  of  a  right  circular  cylinder,  show  that  the 
surface  is  a  minimum  when  the  altitude  =the  diameter. 

6.  The  height  of  the  greatest  rectangle  which  can  be  inscribed 

in  a  given  right  segment  of  a  parabola  is  two-thirds  of  the  height 
of  the  segment. 

7.  Find  the  area  of  the  rectangle  circumscribing  the  loops  of 

the  curve  ay^  —  3ax^y=x*  (Fig.  36).  Ans.  9a^, 
It  7C_ 

8.   [*sin^^d^=-045.  9.   f  *tan'^  rf^=-119. Jo  Jo 

fT  f°°    dx 

10.  I   sec'ddd==ii.  11.  J ^^^:j:^  =-215. 

JqI+x+x^  Jo 

dx         St: 

a+x'y     16" 

806 
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1*3    dx    _, 

J  Q  cos^x sec 
Jo 

["2         dx 

'  Jq  (1+cosx)'~3* 

fYl  —  COJ 

18.   r-^  =3-464. i*X 

20.    I   secxrfa;=-522. 

2 

19.   I     sin'a:<fa:=-002. 
L 

e^cosa:cia:  =  r378. 21.   f  ( Jo 

««     ,3     c?a;         ̂ „^ 
23.       -^Tr=*275. sin  2a; 

dx=2. 

25.   f  — 
dd 

OcosO 

•695. 

■i: 

•  Jo2  + 

V(a;-a)(6-a;) 

dx 
=•604. 

cosx 

a;(ia; 
•219.        31. ^•i; 

32.       xHl-x)Ux 

f^      dx 

27.      TTZ   ^1'813. 

J  q2  +  cos  x ^^    fj         dx  „,^ 
29.        -.   ■   =-810. 

J  Q  sin  a;  +  cos  x 

31.   [  x'{l-x)idx=-152. 

Jo 

3^'  jsec.ftan^  =  ̂̂ ^)+^^g^^^^- 

e-o^cosma:rfa;=^-; — :.  37.      -ttt;   r^  =7r^ — . 
Jq  a'+m^  jQa;^  +  2a;  cos  a  +  1     2  sin  a 

38.  [n — x)eosmxax= — ;. 
jQ\2;r       /  m^ 

39.  ,   2/>  ,  1.2   •   ̂ ^^"Ttan"^— tan  ̂ ) . 
Ja' cos^^  +  6^sm^^    ab  \a  I 
f  dx  2 

40.  -7=   7==T J  \^x  +  a  +  \^x  +  o    ̂  

St: 

128* 3^-j1^^'^-^(V)- 
36 

2  (x  +  a)3-(a;  +  5)8 
a  —  b 

^'»-«\n'  +  l'"^n»+22"^*""^27iV  ~Jq1+x'~4* 
Let  l/w=(ij. 

42.  The  area  of  the  evolute  of  the  ellipse  =—-   t— ̂ -  n, 8       ao 
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43.  A  cycloid  revolves  about  its  axis  of  symmetry.  Show  that 

the  volume  of  the  solid  is  Tra^dTr^— f)  and  that  the  convex  surface 
is  STraHTT— I). 

44.  A  hemispherical  bowl  of  1  ft.  radius  is  filled  with  water 

which  then  runs  out  of  an  orifice  at  the  bottom  ̂   sq.  in.  in  sec- 
tional area.  Find  the  time  of  emptying,  assuming  that  the 

velocity  at  the  orifice  =  ̂2^,  where  x  is  the  height  of  the  surface 
of  the  water  above  the  orifice.  Ans.  1  m.  46  s. 

45.  Find  the  centre  of  gravity  of  the  area  between  the  curve 

(x/a)^  +  iy/b)^  =  1  and  the  axes.  Ans.  'x  =ia,  'y  =ib. 

46.  Prove  that  X{x)  =^  +1",  +f^  +•  •  • 

-,1  "=f  cosnTT  cosn.T   .      _  ^ 47.  a:sma;  =  l-t  cos  a:  =2  I   —   ,  for  [-tt,  ttJ. 
n=2  71—1 

■,    .  ^^^  ( - 1  )«n  sin  nx  ̂      ̂  
48.  a:cosrc=  -t  sma;+2  I    ^—   ,  for  J-tt,  4. 

49.  x^  =—  +—  ̂       — ,cos  nrr  -\ — 4(1  —  cos  titt)    cos  nx,  for  [0,  ;:]. 
4      TT  n=i  Ln^  •  rr  J 

111  t:*     1       1       1  n* 

Hence  prove  that  ̂   +  34  +;^  +  •  •  •  =^'  74+^. "^3^ "^^  *  '  ̂90* 
50.  Find  (1)  the  area,  and  (2)  the  length,  of  one  loop  of  the 

curve  r^=a^  cos  nO. 

^     r/i+i)  ̂        r(l) 

51.  Find  the  area  in  the  first  quadrant  between  the  axes  and 

(-1) 
Show  that  the  area  =  ab  when  n  is  infinite. 

52.  Find  the  area  of  x^+y^=a^  in  the  first  quadrant,  and  the 

whole  area  of  x'  +y'  =a\  Am.  O'SSSa^,  3-708a2. 
53.  Find  the  area  of  one  oval  of  the  curve  2/^=0^  sin  {x/b). 

Ans.  4'792ab. 
JL  — 

54.  Show  that  {^Vsinddd  ,  P     ,   =;r. Jo  Jo  V sm  6 

Ans.    z   — — ab. 
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55.  The  curve  r^  cos  md=a^  rolls  on  a  straight  line.  To  find 
the  differential  equation  of  the  locus  of  the  polar  origin. 

Let  the  straight  line  be  taken  as  x-axis,  and  the  polar  origin 
be  at  (x,  y).  Then  r=the  normal  at  {x,y),  and  2/=the  perpen- 

dicular on  the  tangent  at  {0,r).    Hence 

1  1  (du\  2 

yVl  +p2'     y 

Eliminate  u  and  0  and  show  that  {\+'p'^y-"^  =  {y/ay^, 
56.  A  parabola  rolls  on  a  straight  line.     Show  that  the  focus 

describes  a  catenary. 
57.  Find  the  centre  of  gravity  of  the  arc  of  the  quadrant  of 

an  ellipse  (semi-axes  a  and  h,  eccentricity  e). 

Am.  X  =1  (l  +2^(1  -c^)  log  ̂')  /E{e,  \n\ 

y  =1  (vT^^  +isin-»c)  /E{c,  \n). 

58.  An  ellipse  (eccentricity  e)  and  a  circle  have  equal  areas. 

Find  the  ratio  of  their  circumferences.  Ans.     ,^    '   — . 
7r(l  —  e^)t 59.  Find  the  curves  which  make  an  angle  a  with  the  curves 

r»  =  a»  cos  n^,    r^  cos  nd  =  a^. 

Ans.  r»  =  c"' cos  (n^  + a),     r«  cos  (n<?  — a)  =  c". 
^^   ̂ .        dx    dy  .    ̂      dx    dy  ^     , 
60.  Given  —-^+y  =  sm2t,  — +^ +x  =  0,  show  that at     ai  dt     at 

t    t_ 

x=ce^+c,e  ̂ 2"_|cos2<, t    t_ 

y=  -{V2  +  l)ce'^+  {V2-l)c^e  ̂ ^-{-^  sin2i+|cos2^ 
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310 TABLES. 

1.    POWERS,  NAPIERIAN LOGARITHMS,  ETC. 

X 

xr-^ 

x' 

x' :.* 

(io:^)i 

.-v* 

logc:?^ loge(lO.Y) 

o-i lO O-OI O-OOI 0-316 
I -000 

0-464 

-2-303 

0-000 

0-2 
5-000 

0-04 
0-008 

0-447 1-414 

0-585 —  1-609 

0-693 

0-3 3-333 

0-09 0-027 0-548 1.732 0-696 
—  1 . 204 

1-099 

0-4 
2 '500 

0-16 

0-064 0-632 2.000 

0-737 

—  0.916 1-386 

0*5 2-000 

0-25 
.0-125 

0-707 2.236 

0-794 
-0-693 1-609 

0-6 
1-667 0-36 0.216 

0-775 
2-449 

0-843 
-0-511 1-792 

0*7 1-429 

0-49 0-343 
0-837 

2-646 0-888 

-0-357 

1-946 

0*8 1-250 

0-64 
0-512 

0-894 

2-828 0-928 

—  0.223 

2-079 

0-9 i-iii 0.81 

0.729 

0-949 

3-000 

0-965 
-0-105 

2-197 

10 I -000 I- 00 I- 000 I- 000 

3.162 

I -000 0.000 

2-303 

i-i 
0.909 1.21 

I -331 

1-049 

3-317 
1-032 

0-095 

2-398 

1-2 

0-833 
1-44 

1.728 

1-095 

3-464 

1-063 

0.182 

2-485 

1-3 0-769 
1.69 

2-197 

1-140 

3.606 

I -091 
0.262 

2-565 

1-4 0-714 1-96 

2-744 I -183 

3-742 

I- 119 
0-336 

2-639 

1*5 0-667 

2-25 
3-375 

1-225 3-873 

I -145 0-405 

2-708 

1-6 o-62t; 2.56 
4-096 

1-265 

4-000 

I -170 
0-470 

2-773 

1-7 
0.588 

2-89 
4-913 

1-304 
4-123 

1-193 

0-531 

2-833 

1-8 0-556 3-24 5-832 

1-342 
4-243 

1-216 0.588 

2-890 

1-9 
0-526 

3-6i 

6-859 
1-378 

4-359 

1-239 

0.642 

2-944 

2*0 0-500 
4-00 

8- 000 

1-414 

4.472 
1-260 

0-693 

2-996 

2-1 0.476 
4-41 

9.261 

1-449 

4-583 1-281 
0.742 3 -045 

2-2 

0-455 4-84 10.648 

1-483 

4-690 
I -301 

0-788 
3-091 2"  3 0-435 

5-29 
12. 167 

1-517 

4-796 
1-320 

0-833 

3-135 

2-4 0.417 

5-76 
13.824 

1-549 
4-899 

1-339 
0-875 

3-178 2-5 
0.400 

6-25 

15-625 1-581 

5-000 

1-357 

0.916 
3-219 

2-6 
0-385 6.76 

17-576 
1-612 

5-099 

1-375 

0.956 

3-258 2-7 0-370 7.29 19.683 

1-643 

5-196 

1.392 

0-993 

3-296 
2-8 

0-357 
7-84 

21-952 

1-673 

5-292 

1. 410 

1-030 

3-332 2-9 0-345 8-41 24-389 

1.703 

5-385 1.426 

I  -  065 

3-367 

3*0 

0-333 

9-00 
27-000 

1.732 5-477 1.442 

1-099 

3-401 3-1 

0-323 

9-61 

29-791 
1. 761 

5-568 

1-458 1. 131 3-434 

3-2 

0-313 10-24 

32-768 

1-789 
5-657 

1-474 1-163 

3-466 3-3 
0.303 10-89 

35-937 

1-817 
5-745 

1.489 

1. 194 

3-497 

3-4 

0.294 
11-56 

39-304 

1-844 

5-831 

1-504 
1.224 

3-526 
3*5 0.286 

12.25 42-875 1-871 

5-916 

1. 518 

1-253 

3-555 

3-6 

0.278 12.96 
46-656 

1-897 

6-000 

1-533 

I- 281 3-584 

3-7 0.270 13.69 50-653 
1-924 

6-083 
1-547 

1.308 

3-611 3-8 

0.263 14.44 

54-872 

1-949 6-164 

1-561 

1-335 

3-638 
3-9 

0.256 

15.21 59-319 

1-975 
6-245 1-574 

1-361 
3-664 

4*0 

0.250 16.  oc 
64 -  000 

2- 00c 

6-325 1-5S7 

1-386 3-689 

4*1 

0-244 
16.81 68-921 

2-025 
6.403 

i-6oi 1-411 3-714 

4-2 

0-238 
17.64 

74-088 

2-049 

6.481 

1-61^ 

1-435 

3-738 
4' 3 

0-233 
18.49 

79-507 

2-074 

6-557 

1-626 

1-459 

3-761 
4-4 

0-227 
19.36 85-184 

2-098 

6-633 
1-639 

1.482 3-784 

4' 5 0-222 
20.25 

91.125 
2-I2I 6.708 

i.6i;i 

1-504 

3-807 

4-6 

0-217 
21.16 

97-336 

2-14^ 
6.782 

1.663 

1-526 
3-829 

4-7 
0-213 22.09 

103-823 2-168 

6-856 

1.675 

1-548 

3-850 

4-8 

0-208 23-04 
110-592 

2-  191 
6-928 

1-687 
1-569 

3-871 49 0-204 

24-01 

117-649 
2-214 

7-000 

1-699 1.589 

3-892 

5*0 

0-200 

25-00 125-000 

2-236 
7.071 

1-710 

1-609 

3-912 
c-2-71828,     log*  10-2-30259,     iog,o  e*=  0  43429. 
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200 

196 

192 
189 
185 

182 179 
175 

172 
169 
167 

o- 164 

o- 161 0-159 

0-156 
0-154 

o- 152 149 
147 
145 
143 

141 0.139 
0-137 
0-135 
0-133 

0-132 
0-130 
0-128 o- 127 
0-125 
0-123 

O-  122 

120 
119 

118 
116 
114 

112 
III 

110 
109 

108 
106 
105 

104 103 

102 
lOI 

25-00 
26-01 
27-04 
28-09 

29-  16 
30-25 

31-36 32-49 

33-64 

34.81 
36-00 

37-21 
38-44 

39-69 
40-96 
42-25 

43-56 
44-89 
46-24 

47-61 

49-00 50.41 
51-84 

53-29 

54-76 56-25 

57-76 
59-29 
60-84 

62-41 

64-00 

65-6 67-24 
68-89 

70-56 
72-25 

73-96 
75-69 
77-44 

79.21 
81.00 

82.81 
84.64 86.49 

88.36 

90-25 

92- 16 
94-09 
96-04 

98-01 

125.000 
132.651 

140.608 148.877 

157.464 166.375 

175.616 185-193 

195. 112 
205.379 

216.000 

226*981 

238.328 250-047 
262. 144 

274-625 
287.496 

300.763 

314-432 
328-509 

343.000 
357-9" 

373-248 389.017 

405-224 421-875 

438.976 
456-533 

474-552 
493-039 

512.000 

531-441 

551-368 571.787 

592.704 614.125 

636.056 
658-503 
681.472 

704.969 

729.000 
753-571 

778-688 
804-357 

830-584 
857-375 

884.736 

912-673 

941-192 970-299 

x^ 

(lO:)c) 2-236 

2-258 

2-280 

2.302 2.324 2-345 

2-366 
2-387 

2.408 
2.429 2-449 

2.470 
2.490 

2.510 2-530 

2-550 

560 

588 

608 

627 

646 

665 

683 

2.702 

2-720 

2-739 
2-757 
2-775 
2-793 

2-811 

2-828 
2-846 2-864 

2 
2 
2-915 2-933 

2.950 

2-966 
2-983 

3-000 
3.017 3-033 

3-050 

3-066 
3.082 
3 

3-114 

3-130 
3-146 

7-071 

7-141 

7-211 
7-280 
7-348 

7-416 
7-483 

7-550 

7-616 

7-681 7-746 

7-810 

7-874 
7-937 

8-000 

8-062 
8-124 
8-185 

8-246 8-307 
8-367 

8-426 

8-485 
8-544 

8-602 
8-660 
8-718 

8-775 

8-832 

8-888 
8-944 

9-000 

9-055 

9-
 

9-165 

9-220 

9-274 

9-327 

9-381 

9-434 

9-487 9-539 

9-59 

9-644 9-695 
9-747 

9-798 
9-849 
9-899 

9-950 

1-710 

1.721 1.732 
1-744 
1-754 

1-765 

1-776 

1.786 

1-797 

1-807 
1-817 

1-827 1-837 

I 
I 
I 

•847 ■857 

•866 
.876 

lege 

895 

904 913 

1-92 

931 

940 

949 

957 

966 

975 

983 

992 

000 

008 

017 

025 

033 

041 

049 

2-057 

2-065 

072 
080 
088 

09 

103 

no II 
2-125 2-133 

2. 140 
2-147 

609 

629 
649 

668 
686 

705 
723 

740 
758 

1-775 

1-792 

1-808 

1-825 

I -841 
1-856 

1-872 1-887 

1-902 

1. 917 

1.932 

1-946 

1-960 

1-974 

1-988 
2-001 

2-015 

2-028 2-041 

2-054 

2.067 2.079 

2-092 2-104 

2. 116 

2.128 2. 140 

152 

163 175 

186 

197 

208 

219 

230 

241 
251 

262 

272 
282 

29^ 

loge(io^) 

3.912 

3-932  . 

3-951 

3-970 
3-989 4.007 

4-025 4-043 

4-060 4-078 

4-094 

4-111 

4-127 
4-143 
4-159 

4-174 

4-190 
4-205 

4-220 

4-234 

4.248 4-263 
4-277 

4-290 4-304 
4-317 

4-331 
4-344 4-357 

4-369 

4-382 

4-394 

4-407 
4-419 

4-431 

4-443 

4-454 

4-466 

4-477 

4.489 

4.500 
4-5" 

522 

533 
543 

554 

564 575 

4-585 

4.^:0'; 

logio  a:  =0-43429  loge  x,     loge  x =2-30259  logw  x. 
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2. 
CIRCULAR  FUNCTIONS 

I. 

e d sin^ cosec  6 tan^ cot^ seed cos^ 

Degrees Radians 

O O-OOO O-OOO 

00 

0-000 

00 

1. 000 I-OOO 

I-57I 

90 

I 

0-0I7 
0-017 

57 

.299 

0-017 

57.290 

1. 000 I-OOO 

1-553 

89 

2 

0-035 

0-035 
28 

654 
0-035 

28-636 
1. 001 

0.999 

1-536 

88 

3 0-052 0-052 

19 

107 

0-052 

19-081 

I -001 

0-999 

1-518 

87 

4 
0-070 0*070 

14 

336 

0-070 

14-301 

1-002 

0-998 
1-501 

86 

5 
0-087 

0-087 
II 

•474 
0-087 

11-430 

1-004 0-996 

1-484 

85 

6 
0-105 

0-105 

9 567 

0-105 

9-514 
1-006 

0-995 

1-466 

84 

7 0-122 0-122 8 206    0-123 

8-144 

1-008 

0-993 
1-449 

83 

8 0-140 

0-139 

7 

185 

0-141 
7-II5 

I-OIO 

0-990 
I-43I 

82 9 

0-157 0-156 6 

392 

0-158 

6-314 

1-012 0-988 

1-414 

81 

10 

0-175 
0-174 

5 759 

0-176 

5-671 

I -015 0-985 1-396 

80 

11 0- 192 O-IOI 
5 241 

0-194 

5-M5 

1-019 

0-982 

1-379 

79 12 

0-209 0-208 
4 810 

0-213 
4-705 1-022 

0.978 

1-361 

78 

13 0-227 
0-225 

4 
445 

0.231 

4-331 

1-026 

0-974 
1-344 

77 14 0-244 0-242 
4 

134 0-249 

4-OII 

I-03I 
0-970 

1-326 

76 

15 
0-262 

0-259 

3 

864 

0-268 

3-732 

1-035 

0-966 

I-:09 

75 

i6 

0-279 0-276 
0 

628 

0-287 

3-487 
1-040 

0-961 

1-292 

74 

'Z 

0-297 0-292 
3 

420 

0.306 
3-271 

1-046 0-956 

1-274 

73 
i8 

0-314 
0-309 

3 236 

0-325 

3-078 

1-051 0-951 

1-257 

72 

19 
^•?,3^ 0-326 3 072 

0-344 2-904 1-058 0-946 

1-239 

71 

20 

0-349 0-342 2 
924 

0.364 

2-747 1-064 
0-940 1-222 

70 

21 
0-367 0-358 

2 

790 

0.384 

2-605 
I-07I 

0-934 

I  -  204\ 

.   69 

22 
0-384 

0-375 

2 

669 
0.404 

2-475 

1-079 
0-927 

1-187 

68 
23 

0-401 
0.391 

2 

-559 

0-424 2-356 1-086 0-921 

I-  169 

67 

24 
0-419 

0-407 
2 

459    0-445 

2-246 

1-095 
0-914 1-152 66 

25 

0-436 
0-423 

2 

366 

0-466 

2-145 I -103 

0-906 

.1-134 

65 

26 

0-454 0-438 
2 281 

0.488 

2-050 

I-II3 

0-899 I.II7 

64 

27 

0-471 

0'454 
2 

203 

0-510 

1-963 

I-  122 

0-891 
I -100 

63 

28 0-489 
0-469 

2 130 

0-532 I -881 

I -133 0-883 

1-082 

62 

29 

0-506 

0-485 
2 

063 
0-554 1-804 

I -143 

0-875 1-065 

61 

30 

0-524 0-500 2 000 

0-577 

1-732 

I-I55 

0-866 

1-047 

60 

31 

0-541 
0-515 

942 

0-601 

1-664 

I- 167 

0-857 

1-030 

59 

32 

0'559 0-530 

887 
0-625 

1-600 

I -179 

0-848 
1-012 

58 

33 0.576 

0-545 

836 

0.649 

1-540 
I- 192 

0839 

0-995 

57 
34 

0-593 

0-559 

788 

0-675 1-483 

1-206 

0-829 

0-977 

56 

35 0-611 

0-574 

743 
0.700 1.428 1-221 

0-819 

0-960 

55 

36 

0-628 0.588 

701 

0-727 1-376 1-236 

0-809 

0-942 

54 37 0-646 o-6o2 662 .0-754 

1-327 
1-252 

0-799 

0-92C; 

53 38 

0-663 0.616 

624 

0-781 1.280 

1-269 

0-788 0-908 

52 

39 0-681 
0.629 

589 
o-8io 

I -23s 1-287 

0-777 

0-890 

51 

40 

0-698 

0-643 

556 

0-839 
1. 192 

1-305 

0-766 

0-873 

50 

41 

0-716 
0.656 

524 

0-869 1-150 
1-325 

0-755 
0-855 

49 

42 

0-733 
0-669 

494 0-900 I  •  III 
1-346 

0-743 

0.838 

48 

43 o-7t;o 0-682 

466 

0-933 
1.072 

1-367 0-731 

0-82C 

47 44 0-768 

0-695 

440 

0.966 

1-036 1.390 

0.719 0-803 

46 

45 
0-785 

0-707 
I 414 I-OOO 

I- 000 

1-414 0.707 

0-785 

45 

d cos^ sec^ cot^ lan  d cosec  6 sin^ e 
Pad  fans Defcrees 

lrdn.-57°'29578,l°-0-01745rdn.,lrdn. -206265",  !"■=  000004848  rdn. 
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3.    CIRCULAR  FUNCTIONS,  II. 

d 
Radians 

e 
Degrees 

sinl9 cosec  d tan  d COt0 sec^ cos  a 

0-00 o-oo o-ooo 

00 

o-ooo 

00 

I- 000 I- 000 

o-oi 

0-57 
O-OIO 

100 -002 
o-oio 99-997 

I -000 I- 000 

0-02 
0-03 
0-04 

1-72 2-29 

0-020 
0-030 
0-040 

50-003 

25-007 

0-020 0-030 

0-040 

49-993 

33-323 
24-987 

I -000 

I -000 
I -001 

I- 000 
I -000 

0-999 

0-05 
o-o6 0-07 
o-o8 o-op 

2-86 

3-44 

4-01 
4-58 

5-16 

0-050 

0-060 
0-070 

0-080 
0-090 

20  -  008 16-677 

14-297 
12-513 

II- 126 

0-050 

0-060 
0-070 

0-080 
0-090 

19-983 
16-647 

14-263 
12-473 

11-081 

I -001 
1-002 

I -002 

1-003 

1-004 

0-999 

0-998 

0-998 

0.997 

0-996 

o-i 
0-2 
0-3 
0-4 
0-5 

5-73 
11-46 
17-19 
22-92 
28-65 

O-IOO 0-199 

0-296 0-389 0.479 

10-017 
5-033 

3-384 
2.568 
2-086 

O-IOO 
0-203 
0-309 
0-423 

0.546 

9-967 
4-933 

3-232 

2-365 

1-830 

1-005 

1-020 

1-047 

1-086 I- 140 

0-995 

0-980 

0-955 

0-921 
0-878 

0-6 
0-7 

0-8 0-9 

i-o 

34-38 
40-11 
45-84 51-57 

57-30 

0-565 0-644 
0-717 
0-783 

0-842 

1-771 
1-552 1-394 1-277 

I -188 

0-684 

0-842 
1-030 

1-260 1-558 

1-462 

1-187 

0.971 
0.794 

0-642 

1-212 

1-307 1-435 

1-609 

1-851 

0-825 
0.765 
0-697 

0-622 0-540 

I- 1 

1-2 
1-3 
1-4 
1*5 

74-48 80-21 

85-94 

0-891 
0-932 
0-964 
0-985 
0-997 

I- 122 

1-073 

1-038 1-015 
1-003 

1-965 

2-571 

3-602 5-798 
14- lOI 

0-509 
0-389 

0-278 
0-172 
0-071 

2-205 

2-  760 

3-738 5-884 
14-136 

0-453 

0-362 0-268 
0-170 
0.071 

\7Z
 90-00 

I- 000 I- 000 

CO 

o«ooo 

00 

0.000 

;r  =  3-14159, 712  =  9-86960,           V;r=l- 

77245, 

;r-^=0- 
31831, ;r-2=0'l( 

3132, 

V^i=( 

3-56419. 
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4.    HYPERBOLIC  FUNCTIONS. 

X 

ex 
e-x 

sinha; coshiv tanh:x: coth  X secha; cosech  X 

0-0 I-OOO I- 000 I -000 I -000 o-ooo 

00 

I-OOO 

00 

o-i 
1*105 

0.905 
o- 100 

1-005 

o- 100 

10-035 

0-995 

9-985 

0-2 I-22I 

0-819 0-20I 1-020 

0-197 

5-067 
0-980 

4-975 

0-3 1-350 0-741 

0-305 

1-045 
0-291 3-433 

0-957 

3-284 
0-4 1-492 0-670 0-411 

I -081 0-380 
2-632 

0-925 

2-433 

0*5 
1-649 0-607 

0-521 
1-128 0-462 

2- 164 
0-887 1-919 

0-6 1-822 

0-549 
0-637 1-185 

0-537 

1-862 

0-844 

1-570 

0-7 2-014 

0-497 
0-759 

1-255 0-604 

1-655 

0-796 

1-318 

0-8 2-226 

0-449 
0-888 

1-337 0-664 

1-506 

0-748 
1-126 

0-9 2-460 
0-407 

1-027 

1-433 

0-716 

1.396 
0-698 

0-974 

i-o 2-718 0.368 

1-175 
1-543 

0-762 

1-313 
0*648 

0-851 

I- 1 3-004 

0-333 
1-336 

1-669 
0-800 

1-249 
0-599 

0-749 

1-2 
3-320 

0-301 

1-509 
1-811 

0-834 

1-200 

0-552 
0-662 

1-3 
3-669 

0-273 
1-698 1.971 0-862 I- 161 

0-507 

•589 

1-4 4-055 

0-247 1-904 2-151 

0-885 
I- 129 

0-465 
0-525 

1-5 

4-482 

0-223 
2- 129 2-352 

0-905 
I -105 

0.425 
0-470 

1-6 4-953 0-202 
2-376 

2-577 

0-922 

1-085 

0-388 0-421 

1-7 
5-474 

0-183 2-646 2-828 

0-935 1-069 

0-354 

0-378 

1-8 6-050 
0-165 2-942 3-107 

0-947 
1-056 

0-322 

0-340 

1-9 6-686 0-150 

3-268 3.418 

0-956 1-046 

0-293 

0-306 

2-0 7-389 

0-135 

3-627 

3.762 

0-964 

1-037 

0-266 

0-276 

2-1 8-166 0-122 

4-022 

4.144 
0-970 1-031 

0-241 

0-249 

2-2 9.025 
O'lII 

4-457 

4-568 

0-976 

1-025 
0-219 

0-224 

2-3 
9-974 o- 100 

4-937 5-037 0-980 I -020 

o- 198 

0-203 

2-4 
11-023 

0-091 

5-466 

5-557 

0-984 
1-017 

0-180 

0-183 

2-5 
12-182 0-082 6-050 6-132 

0-987 1-014 

0- 163 
0- 165 

2-6 13-464 

0-074 
6-695 6-769 

0-989 

I-OII 

0- 148 

0-149 

2-7 
14.880 

0-067 

7-406 

7-473 
0-991 

1-009 

0-134 

0-135 

2-8 
16-445 0-061 8-192 

8-253 
0-993 

1-007 

0- 121 0- 122 

2-9 18-174 

0-055 

9-060 

9-II5 

0-994 

1-006 o-  no O-IIO 

3'0 
20-090 

0-050 
10-018 10-068 

0-995 1-005 

0-099 
0-099 

3-1 
22- 198 

0-045 
11-076 11.122 

0-996 
1-004 0-090 0-090 

3-2 

24-533 
0-041 12-246 

12-287 

0-997 
1-003 

o-o8i 0-082 

33 27-113 

0-037 

13-538 

13-575 

0-997 1-003 

0-074 
0-074 

3- 4 29-964 

0-033 
14.965 

14-999 0-998 
1-002 

0-067 
0-067 

3-5 
33-116 

0-030 
16-543 

16-573 0-998 
1-002 0-060 

o-o6o 

3-6 
36-598 

0-027 
18-286 

18-313 

0-999 

I -001 

0-055 

0-055 

3-7 40-447 

0-025 
20-211 

20-236 

0-999 

I -001 

0-049 
0-049 

3-8 44-701 
0-022 

22-339 
22-362 

0-999 

I -001 

0-045 
0-045 

3-9 
49-402 

0-020 

^4.691 24-711 

0-999 

I -001 

0-040 
0-041 

4-0 
54-598 

0-018 
27-290 27-308 

0-999 

I -001 

0-037 

0-037 

irr 
4-810 

0-208 2-301 

2-509 
0-917 

I -091 0-398 

0-435 

n 23-141 

0-043 11-549 11-592 
0-996 

1-004 
0-087 0-087 

If  x>4,  then  (approximately)  sinh  a;  =  cosh  X' 
antilogarithm  of  x. 

ie^  =  J  the  Napierian 
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5.    LAMBDA  FUNCTION. 

d m 
O'OOO 

d 

15° 

X{d) 

0-265 
0 

30° 

0-549 ^ m 
d       X{0) 

d m 

0° 

45°
 

0-881 
60°  I 317 

75°
 

2-028 

I" 

0-017 

16" 

0-283 

31^
 

0-570 

46^
 

0-906 61"  I 

352, 

76°
 

2-097 

2^ 

0-035 

17" 

0-301 

32"
 

0-590 

47"
 

0-932 

62°  I 

389 

77°
 

2-172 

3"
 

0-052 

18- 

0-319 

33^
 

0-611 

48"
 

0-957 

63°  I 

427 

78°
 

2-253 

4"
 

0-070 

|i9
" 

o-33« 

34" 

0-632 

49"
 

0-984 

64°  I 

466 

79°
 

2-340 

5"
 

0-087 

20" 

0-356 

35" 

0-653 

50"
 

I-OII 

65°  I 

S06 

80° 

2-436 

6° 

0- 105 

:  21" 

0-375 

36"
 

0-674 

51"
 

1-038 

66°  I 

549 

81° 

2-542 

7°
 

O-  122 

22" 

0-394 

37"
 

0-696 

52"
 

1-066 

67°  1 

592 

82° 

2-660 

8° 
o- 140 

23° 

0-413 

38°
 

0-718 

53°
 

1-095 

68°  I 
638 

83° 

2-794 

9"
 

0-158 

24" 

0-432 

39"
 

0-740 

54"
 

I-I24 

69°  I 
686 

84° 

2-949 

10" 

0-175 

25^^
 

0-451 

40"
 

0-763 

55"
 

I -154 

70°  I 

735 

85° 

3-131 

II" 

0-193 

26" 

0-470 

41"
 

0-786 

50"
 

I -185 

71°  I 

788 

86° 

3-355 

12" 
0-2II 

27" 

0-490 

42"
 

0-809 

57"
 

I-2I7 

72°  I 

843 

87° 

3-643 

13° 

0-229 

28" 

0-509 

43"
 

0-833 

5«"
 

1-249 

73"  I 

901 

88° 

4-048 

14° 

0-247 

2g- 

0-529 

44"
 

0-857 

59"
 

1-283 

74"  I 

962 

89° 

4-741 

15" 

0-265 

30-
 

0-549 

45"
 

0-881 

bo" 

1-317 

75"  2 

028 

90"
 

00 

X{0)  =  \ogei3di{\7t-\-\d)  =  \oge  (sec  <?+tan  d),  X{-d)  = 
6.    GAMMA  FUNCTION. 

■m,G=g^x{d). 

n r(.) n n ) n 

r{n) 

n 

nn) 
n 

1-80 nn) 
I' 00 I I -20 0-9182 

1-40 

0-8873' 

1-60 

0-8935 
0-9314 

I-OI 
0.9943 1-21 0-9156 

1-41 0-8868 1-61 

0-8947 

i-8i 
0-9341 

I-02  0-9888 
1-22 0-9131 

1-42 0-8864 
1-62 

0-8959 

1-82 

0-9369 

1-03  0-9836 

1-23 

0-9108 

1-43 

0-8860 

1-63 

0-8972 

1-83 0-9397 

1-04'  0-9784 

1-24 0-9085 

1-44 
0-8858, 

1-64 

0-8986 

1-84 

0-9426 

1-05  0-9735, 

1-25 
0-9064 

1-45 

0-8856 

1-65 

0-9001 

1-85 

0-9456 

1-06  0-9688 
1-26 

0-9044 1-46 
0-8856^ 

1-66 

0-9017 
1-86 

0-9487 

1-07  0-9642 

1-27 0-9025, 

1-47 

0-8856 

1-67 0-9033 

1-87 

0.9518 

1-08:  0-9597 
1-28 0-90071 

1-48 

0-8857 
1-68 0-9050 1-88 

0-9551 

1-09  0-9555 

1-29 0-8990 

1-49 

0-8860 

1-69 

0-9068 

1-89 

0-9584 

i-io  0-9514 
1-30 

0-8975 1-50 0-8862 
1-70 

0-9086 

1-90 

0-9618 

I-Il|  0-9474 

I -31 0-8960 
1-51 0-8866 

1-71 

0-9106 

1-91 
0-9652 

I-I2  0-9436 
1-32 0-8946 1-52 0-8870 

1-72 

0-9126 

1-92 
0-9688 

I -13  0-9399 

I  -  33 
0-8934 

1-53 

0-8876 

1-73 

0-9147 

1-93 

0-9724 

I -141  0-9364 

1-34 

0-8922 

1-54 

0-8882 

1-74 

0-9168 

1-94 

0.9761 

I-I5  0-9330 

1-35 

0-891 I 

1-55 

0-8889' 

1-75 

0-9191 

1-95 

0-9799 

1-16  0-9298^ 
1-17  0-9267^ 

1-36 0-8902 
1-56 0-8896 

1-76 0-9214 1-96 

0.9837 

1-37 0-8893 

1-57 
0-8905 

1-77 

0-9238 

1-97 

0-9877 

i-iS,  0-9237 
1-38 

0-8885 1.58 
0-8914 1-78 

0-9262 

1.98 
0-9917 

I -19  0-9209^ 
I-20  0-9182, 

1-39 0-8879 

1-59 

0-8924 

1-79 

0-9288 

1-99 

0-9958 

1-40 
08873 I -60 

0-8935 

1-80 

0-9314 
2-00 

I 

j-QO
 

n)  =      x^-^ Jo r(n)  = 
er3^  dx,        r(n+l)=nr(n). 
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7.    FIRST  ELLIPTIC  INTEGRAL,  F(m,e\  m=sina. 

d 
a=o° a=i5° 

a  =30° 
«=45° 

a  =60° 
0-000 «=75° 

a  =90° 

0°
 

o-ooo 0-000 o-ooo 0.000 0-000 
0-000 

5°
 

0-087 
0-087 

0.087 
0.087 

0-087 
0-087 

0-087 

10° 

0.175 

0.175 
0-175 

0-175 
0-175 

0-175 

0-175 

15° 

0-262 0.262 

0.263 
0.263 

0*264 
0-265 

0-265 

20° 

0-349 0-350 0-351 

0-353 
0-354 

0-356 
0-356 

25° 

0.436 

0-437 
0.440 

0-443 

0.447 

0-450 
0-451 

30°
 

0-524 
0-525 

0.529 0-536 0.542 

0-S47 

0-549 

35°
 

0.611 

0.613 
0-620 

0-630 
0.641 

0-649 

0-653 

40°
 

0-698 0.702 0.712 

0-727 

0.744 

0-757 0.763 

45°
 

0-785 0.790 
0-804 

0-826 

0-851 

0-873 

0.881 

50°
 

0-873 
0-879 0.898 

0-928 

0.965 

0.997 

I. on 

55°
 

0-960 0-968 

0-993 
1-034 

1-085 

I -133 
I -154 

6o° 

1-047 1-058 1-090 1-142 

1-213 
1-284 

1-317 

65° 

1-134 
1-147 1. 187 

1-254 
1-349 

1-453 

1-506 

70°
 

1-222 

1-237 1-285 1-370 

1-494 

1-647 

1-735 

75°
 

1-309 
1-327 

1-385 
1-488 

1-649 
1. 871 

2.028 

8o° 

1-396 1-418 

1-485 
1-608 

1-813 

2-134 

2-436 

85° 

1-484 1-508 

1-585 I -731 

1.983 

2-437 

3-U^ 

90°
 

1-571 1-598 1-686 

1-854 
2.157 

2-768 

00 

8.    SECOND  ELLIPTIC  INTEGRAL,  E(m,  0),  m  =  sin  a. 

e 
a=o° «==i5° 

a=30° 
o-ooo «=45° 

a  =60° 
«=75° 

«  =  9o° 

0° 

o-ooo o-ooo 0-000 0-000 
0.000 

0.000 

5°
 

0-087 
0-087 

0-087 
0-087 

0-087 
0-087 

0.087 

10° 

0-175 
0-174 

0-174 
0-174 

0-174 
0-174 

0-174 

15° 

0-262 0-262 0-261 0-260 0-260 

0-259 

0-259 

20° 

0-349 
0-349 

0-347 
0-346 

0-344 

0-342 0-342 

25° 

0.436 

0-435 
0-433 

0-430 
0-426 

0-424 

0-423 

30°
 

0-524 0-522 0-518 0-512 0-506 0-502 
0-500 

35°
 

0-611 o-6o8 0-602 

0-593 0-583 0-576 

0-574 

40°
 

0-698 

0-695 0-685 
0-672 

0-657 
0-647 

0-643 

45°
 

0.785 0-781 

0-767 0.748 
0-728 

0-713 
0-707 

50°
 

0-873 0-866 
0-848 

0-823 

0-79S 0.774 

0-766 

55°
 

0-960 0-952 0-928 

0-895 

0-859 

0-830 

0-819 

60° 

1-047 
1-037 

1-008 

0-965 

0-918 0-881 
0-866 

65° 

I -134 I- 122 1-086 

1-033 
0-974 

0-926 0-906 

70°
 

1-222 1-206 

1-163 

1-099 1-027 

0-965 

0-940 

75°
 

I  -  309 
1-291 1-240 

1-163 1-076 

0.999 

0-966 

80° 

1-396 

1-375 
I-3I6 

1-227 

I- 122 
1-028 

0-985 

85° 

1-484 1-460 
1-392 

1-289 
1-167 

1-053 

0.996 

90°
 

1-571 
1-544 

1-467 1-351 
1. 211 

1.076 

1. 000 
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Acceleration,  73 
Amsler,  planimeter,  301 

integrator,  302 
Anchor  ring,  180,  193 
Area,  95,  134,  159,  190,  191,  299 

of  any  surface,  200 
Argument  of  function,  11 
Asymptotes,  57,  153 
Asymptotic  circle,  155 

Barometric       measurement 
of  heights,  39 

Bernoulli's  equation,  266 

Cardioid,  151,  160,  170 
Catenary,  209,  269,  308 
Cauchy,  form  of  remainder,  225 
Centre  of  conic,  45 

of  any  curve,  290 
of  curvature,  84,  88 
of  gravity,  176,  304 
of  quadric,  65 

Centroid,  177 
Circle,  139,  150 

of  curvature,  85 
Circular  functions,  28, 32,  311,  312 
Cissoid,  55,  61,  139 

Clairaut's  equation,  268 
Companion  to  cycloid,  31,  140 
Compound  interest  problem,  269 
Concavity  and  convexity,  82 
Conchoid,  163 
Conical  point,  64 
Conjugate  point,  52 
Consecutive  points,  85 
Constant  of  integration,  98 
Continuity,  12,  250 
Convergence,  211 
Chirvature,  82,  157,  207 
Ourve  of  pursuit,  285 

Curve  tracing   290 
Cusp,  52 
Cycloid,  29,  91,  140,  307 

companion  to,  31,  140 
Cylinder,  145, 198,  199,  200 

Damped  vibrations,  284 
Demoivre's  theorem,  220 
Derivative,  13 
Differences,  small,  47 
Differential,  15 

coefficient,  15 
of  area,  38 

of  exponentials,  25 
of  hyperbolic  functions,  34 
of  logarithms,  25 
of  power,  product,  quotient,  16 
partial,  41,  250 
successive,  68,  250 
total,  42,  253 

Differential  equations,  259,  272 
exact,  263 
homogeneous,  262 
linear,  265,  275 

Element  of  integral,  94 
Ellipse,  70,  87,  88,  140,  151,  162, 

241,308 
Ellipsoid,  144   194.  195 
Elliptic  integrals,  239,  316 
Envelopes,  171 
Epicycloid,  169,  200 
Epitrochoid,  170 
Equations,  differential,  259,  272 

solution  of,  by  approximat  on, 
49 

Euler,  exponential  formulae,  220 
theorem  on  homogeneous  func- 

tions, 44,  255 
Evolute,  88,  175,  207 317 
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Folium,  53,  80,  163 
Fourier,  series,  228 

theorem,  236 
Function,  complementary,  278 

even,  odd, 40 
implicit,  11 
single-valued ,   multiple-valued , 

12 

Gamma  function,  132,  315 
Graphs,  11 
Guoermannian,  36,  298 
Guldin,  properties  of  the  centre 

of  gravity,  178 
Gyration,  radius  of,  183 

Helix,  67,  148 
Huyghens,    formula   for   circular 

arc,  222 
Hyperbola,  141,  151,  162 

rectangular,  23,  139,  150,  162 
Hyperbolic  functions,  34,  294,  313 
Hypocycloid,  169 

four-cusped,  22,  46,  92,  136 

Indeterminate  forms,  244 
Infinitesimals,  4 

equivalence  of,  8 
orders  of,  7 

Inflexion,  point  of,  82, 155 
Integral,  definite,  indefinite,  98 

double,  190 
triple,  194 

Integrals,  definite,  129 
elliptic,  239 
fundamental,  99 
particular,  278 

Integration,  93 
approximate,  239 
by  parts,  120 
by  substitution,  114 
bv  successive  reduction,  124 
of  rational  fractions,  112 
mechanical,  299 
successive,  189 

Integrator,  302 
Interval,  13 
Intrinsic  equation,  205 
Inverse  curves,  165 
Involute,  88 

of  circle,  158,  207 

Kinetic  energy  of  rotation,  181 

Lagrange,  form  of  remainder,  225 
Lambda  function,  105,  315 
Lemniscate,  53, 150, 156, 157, 161, 

242 
Lengths  of  curves,  134, 148,  241 
Lima^on,  151,  162 
Limit,  1 

Lituus,  151,  154,  156 
Logarithms,  calculation  of,  216 

Napierian,  310,  311 

Maclaurin,  series,  218,  226 
theorem,  226 

Maxima  and  minima,  75,  256 
Mean  value,  theorem  of,  223 
Mean  values,  202 
Moment,  of  area,  191,  302 

of  inertia,  181, 191, 192, 197, 302 
Multiple  points,  51,  56,  156 

Node,  52 
Normal,  21,  44,  150 

of  surface,  64 

Pappus,  properties  of  centre  of 
gravity,  178 

Parabola,  22,  70,  90,  141,  151 
cubical,  136 
semicubical,  53,  136 

Paraboloid,  elliptic,  144 

hyperbolic,  195 
Partial  fractions,  287 
Pedal  curves,  166 
Pendulum,  243 
Planimeter,  302 
Polar  coordinates,  136 
Polar  reciprocals,  168 
Potential,  193,  197 
Prismoidal  formula,  147 
Product  of  inertia,  191 

Radius,  of  curvature,  85, 158 
of  gyration,  183 

Rates,  72 

Rolle's  theorem,  224 
Roulettes,  168 

Series,  Fourier's,  228 
Gregory's,  217 infinite,  211 
logarithmic,  216 
Maclaurin's,  218,  226 
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Series,  power,  213 

Taylor's,  220,  226 
Simpson's  rule,  142 
Singular  forms,  244 
Solid  of  revolution,  96,  134 
Sphere,  139,  196,  198 
Spheroids,  141 
Spiral,  of  Archimedes,  151,  160 

hyperbolic,  151,  154 
logarithmic,  152,  153,  158 

Subnormal,  21,  150 
Subtangent,  21,  150 
Symmetry,  290 

Tangent,  20,  44, 150 
to  curve  in  space,  65 

Tangent  plane,  62 

Taylor,  series,  220.  226 
theorem,  223 

Torus,  180,  193 
Tractrix,  207 
Trajectories,  270 
Triple  point,  52 
Trochoid,  168 
Turning  value,  76 

Value  of  ;r,  217 
Variable,  1, 11 

change  of,  280 
independent,  11,  68 

Velocity,  73 

Volumes,  134,  144,  193, 196 

Witch,  84,  139 
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Van  Deventer's  Physical  Chemistry  for  Beginners.     (Boltwood.)   i2mo,     i  SO* 
*  Walke's  Lectures  on  Explosives   8vo,    4  oo; 
Ware's  Beet-sugar  Manufacture  and  Refining    Small  Svo,  cloth,    4  09, 
Washington's  Manual  of  the  Chemical  Analysis  of  Rocks   Svo,    2  00 
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'Wassermann's  Immune  Sera :  Haemolysins,  Cytotoxins,  and  Precipitins.    (Bol- 
duan.)   i2mo, 

"Weaver's  Military  Explosives   8vo, 
"Wehrenfennig's  Analysis  and  Softening  of  Boiler  Feed-Water   8vo. 
Wells's  Laboratory  Guide  in  Qualitative  Chemical  Analysis   8vo, 

Short  Course  in  Inorganic  Qualitative  Chemical  Analysis  for  Engineering 
Students   i2mo. 

Text-book  of  Chemical  Arithmetic   i2mo, 

Whipple's  Microscopy  of  Drinking-water   Svo, 
Wilson's  Cyanide  Processes   i2mo, 

Chlorination  Process   i2mo, 

Winton's  Microscopy  of  Vegetable  Foods   Svo, 
WuUing's    Elementary    Course    in  Inorganic,  Pharmaceutical,  and  Medical 

Chemistry        i2mo, 

CIVIL  ENGINEERING. 

BRIDGES    AND    ROOFS.       HYDRAULICS.       MATERIALS    OF    ENGINEERING. 
RAILWAY  ENGINEERING. 

Baker's  Engineers'  Surveying  Instruments   i2mo, 
Bixby's  Graphical  Computing  fable   Paper  igi  -  24}  inches. 
-**  Burr's  Ancient  and  Modern  Engineering  and  the  Isthmian  Cana  ..  (Postage, 

27  cents  additional.)   Svo, 

•'^Comstock's  Field  Astronomy  for  Engineers   Svo, 
Davis's  Elevation  and  Stadia  Tables   Svo, 
Elliott's  Engineering  for  Land  Drainage   i2mo. 

Practical  Farm  Drainage   i2mo, 

*Fiebeger's  Treatise  on  Civil  Engineering   Svo, 
Plemer's  Phototopographic  Methods  and  Instruments   Svo, 
Folwell's  Sewerage.     (Designing  and  Maintenance.)   Svo, 
Freitag's  Architectural  Engineering.     2d  Edition,  Rewritten   Svo, 
-Trench  and  Ives's  Stereotomy   8vo, 
■Goodhue's  Municipal  Improvements   i2mo, 
Goodrich's  Economic  Disposal  of  Towns*  Refuse   Svo, 
•Gore's  Elements  of  Geodesy   8vo, 
Hayford's  Text-book  of  Geodetic  Astronomy   Svo, 
Bering's  Ready  Reference  Tables  (Conversion  Factors)   i6mo,  morocco, 

";Howe's  Retaining  Walls  tor  Earth.   i2n:o, 
-*  Ives's  Adjustments  of  the  Engineer's  Transit  and  Level.  . . ,  i6mo,  Bds. 
Ives  and  Hilts's  Problems  in  Surveying   i6mo,  morocco, 
Johnson's  (J.  B.)  Theory  and  Practice  of  Surveying   Small  Svo, 
Johnson's  (L.  J.)  Statics  by  Algebraic  and  Graphic  Methods   Svo, 
Laplace's  Philosophical  Essay  on  Probabilities.     (Truscott  and  Emory.) .  lamo, 
Mahan's  Treatise  on  Civil  Engineering.     (1873-)     (Wood.)   Svo, 
*       Descriptive  Geometry   Svo, 
Merriman's  Elements  of  Precise  Surveying  and  Geodesy   Svo, 
Merriman  and  Brooks's  Handbook  for  Surveyors   i6mo,  morocco, 

Nugent's  Plane  Surveying   Svo, 
Ogden's  Sewer  Design   i2mo, 
Parsons's  Disposal  of  Municipal  Refuse   8vo, 
Patton's  Treatise  on  Civil  Engineering   Svo  half  leather, 

Heed's  Topographical  Drawing  and  Sketching   4to, 
Hideal's  Sewage  and  the  Bacterial  Purification  of  Sewage   Svo, 

Siebert  and  Biggin's  Modern  Stone-cutting  and  Masonry   Svo, 

Smith's  Manual  of  Topographical  Drawing.     (McMillan.^   Svo, 

Sondcricker's  Graphic  Statics,  with  Applications  to  Trusses,  Beams,  and  Arches. 
Svo, 
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Taylor  and  Thompson's  Treatise  on  Concrete,  Plain  and  Reinforcea   8vo, 
*  Trautwine's  Civil  Engineer's  Pocket-book   i6mo,  morocco, 
Venable's  Garbage  Crematories  in  America   8vo, 
Wait's  Engineering  and  Architectural  Jurisprudence   8vo, 

Sheep, 

Law  of  Operations  Preliminary  to  Construction  in  Engineering  and  Archi- 
tecture  8vo, 

Sheep, 

Law  of  Contracts   gvo, 
Warren's  Stereotomy — Problems  in  Stone-cutting   Svo, 
Webb's  Problems  in  the  Use  and  Adjustment  of  Engineering  Instruments. i6mo,  morocco, 

Wilson's  Topographic  Surveying   Svo, 

BRIDGES  AND  ROOFS. 

Boiler's  Practical  Treatise  on  the  Construction  of  Iron  Highway  Bridges.  .Svo, 
*       Thames  River  Bridge   4to,  paper. 

Burr's  Course  on  the  Stresses  in  Bridges  and  Roof  Trusses,  Arched  Ribs,  and 
Suspension  Bridges   Svo, 

Burr  and  Falk's  Influence  Lines  for  Bridge  and  Roof  Computations   Svo, 
Design  and  Construction  of  Metallic  Bridges   Svo, 

Du  Bois's  Mechanics  of  Engineering,     Vol.  II   t^mall  4to, 
Foster's  Treatise  on  Wooden  Trestle  Bridges        4to, 
Fowler's  Ordinary  Foundations   8vo, 
Greene's  Roof  Trusses   Svo, 

Bridge  Trusses   Svo, 
Arches  in  Wood,  Iron,  and  Stone   Svo, 

Howe's  Treatise  on  Arches   Svo, 
Design  of  Simple  Roof-trusses  in  Wood  and  Steel   Svo, 
Symmetrical  Masonry  Arches   Svo, 

Johnson,  Bryan,  and  Turneaure's  Theory  and  Practice  in  the  Designing  of 
Modern  Framed  Structures   Small  4to, 

Merrlman  and  Jacoby's  Text-book  on  Roofs  and  Bridges : 
Part  I.     Stresses  in  Simple  Trusses   Svo, 
Part  11.     Graphic  Statics   Svo, 

Part  III.  Bridge  Design   Svo, 
Part  IV.   Higher  Structures   Svo, 

Morison's  Memphis  Bridge   4*0, 
Waddell's  De  Pontibus,  a  Pocket-book  for  Bridge  Engircers.  .i6rro,  morocco, 

*  Specifications  for  Steel  Bridges   lamo, 

Wright's  Designing  of  Draw-spans,     Two  parts  in  one  volume   Svo, 

HYDRAULICS. 

Barnes's  Ice  Formation   8vo,  3  oa 
Bazin's  Experiments  upon  the  Contraction  of  the  Liquid  Vein  Issuing  from 

an  Orifice.     (Trautwine.)   8vo,  2  00 

Bovey's  Treatise  on  Hydraulics   8vo,  5  00 
Church's  Mechanics  of  Engineering        8vo,  6  00 

Diagrams  of  Mean  Velocity  of  Water  in  Open  Channels   ,  paper,  i  50 

Hydraulic  Motors   8vo,  2  00 

Coffin's  Graphical  Solution  of  Hydraulic  Problems   i6mo,  morocco,  2  5»-" 
Flather's  Dynamometers,  and  the  Measurement  of  Power   i2mo,  3  00 

Folwell's  Water-supply  Engineering   8vo,  4  00 

FrizeU's  Water-power   8^°'  5  00 
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"Fuertes's  Water  and  Public  Health.   ,  . . , i2mo,    i  50 
Water-filtration  Works   i2mo,    2  50 

■Ganguillet  and  Kutter's  General  Formula  for  the  Uniform  Flow  of  Water  in 
Rivers  and  Other  Channels.     (Bering  and  Trautwine.)   8vo,    4  00 

Hazen's  Filtration  of  Public  Water-supply   8vo,    3  00 
Hazlehurst's  Towers  and  Tanks  for  Water-works   8vo,    2  50 

Herschel's  115  Experiments  on  the  Carrying  Capacity  of  Large,  Riveted,  Metal 
Conduits   8vo,    2  00 

Mason's  Water-supply.     (Considered  Principally  from  a  Sanitary  Standpoint.) 

8vo, 

Merrlman's  Treatise  on  Hydraulics   8vo, 
"*  Michie's  Elements  of  Analytical  Mechanics   8vo, 
Schuyler's   Reservoirs   for   Irrigation,   Water-power,  and   Domestic   Water- 

supply   Large  8vo, 

**  Thomas  and  Watt's  Improvement  of  Rivers      (Post.,  44c.  additional.)  4to, 
Turneaure  and  Russell's  Public  Water-supplies   8vo, 
Wegmann's  Design  and  Construction  of  Dams   4to, 

Water-supply  of  the  City  of  New  York  from  1658  to  1895   4to, 

Williams  and  Hazen's  Hydraulic  Tables   8vo, 
Wilson's  Irrigation  Engineering   Small  8vo, 
Wolff's  Windmill  as  a  Prime  Mover   8vo, 
Wood's  Turbines   8vo, 

Elements  of  Analytical  Mechanics   8vo, 

MATERIALS  OF  ENGINEERING. 

Baker's  Treatise  on  Masonry  Construction   8vo, 
Roads  and  Pavements   8vo, 

Black's  United  States  Public  Works   Oblong  4to, 
*  Bovey's  Strength  of  Materials  and  Theory  of  Structures   8vo, 
Burr's  Elasticity  and  Resistance  of  the  Materials  of  Engineering   8vo, 
Byrne's  Highway  Construction   8vo, 

Inspection  of  the  Materials  and  Workmanship  Employed  in  Construction. i6mo. 

Church's  Mechanics  of  Engineering   8vo, 
3>u  Bois's  Mechanics  of  Engineering.     Vol.  I   Small  4to, 
^Eckel's  Cements,  Limes,  and  Plasters   8vo, 
Johnson's  Materials  of  Construction   Large  8vo, 
Powler's  Ordinary  Foundations   .8vo, 
Oraves's  Forest  Mensuration   8vo, 
*  Greene's  Structural  Mechanics   8vo, 
Keep's  Cast  Iron   8vo, 
Lanza's  Applied  Mechanics   8vo, 
Marten's  Handbook  on  Testing  Materials.     (Henning.)     2  vols   8vo, 
Maurer's  Technical  Mechanics   8vo, 
Merrill's  Stones  for  Building  and  Decoration     8vo, 
Merriman's  Mechanics  of  Materials   8vo, 

Strength  of  Materials   i2mo, 

Metcalf'i.  Steel.     A  Manual  for  Steel-users   i2mo, 
Patton's  Practical  Treatise  on  Foundations   8vo, 
Richardson's  Modern  Asphalt  Pavements       8vo, 
Richey's  Handbook  for  Superintendents  of  Construction   i6mo,  mor., 
*  Ries's  Clays:  Their  Occurrence,  Properties,  and  Uses   8vo, 
Rockwell's  Roads  and  Pavements  in  France   i2mo, 
Sabin's  Industrial  and  Artistic  Technology  of  Paints  and  Varnish   8vo, 
Smith's  Materials  of  Machines   i2mo. 

<Snpw's  Principal  Species  of  Wood   8vo, 
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Spalding's  Hydsawlic  Cement.  .        izmo 
Text-book  on  Roads  and  Pavements   i2mo' 

Taylor  and  Thompson's  Treatise  on  Concrete.  Plain  and  Reinforced   8vo' 
Thurston's  Materials  of  Engineering.     3  Parts   gvo* 

Part  I.     Non-metallic  Materials  of  Engineering  and  Metallurgy   8vo, Part  II      Iron  and  Steel. 

.8vo, 
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Part  III.     A  Treatise  on  Brasses,  Bronzes,  and  Other  Alloys  and  their 
Constituents   gy^ 

Thurston's  Text-book  of  the  Materials  of  Construction   8vo', 
Tillson's  Street  Pavements  and  Paving  Materials   8vo, 
"Waddell's  De  Pontibus     (A  Pocket-book  for  Bridge  Engineers.) .  .  i6mo,  mor., Specifications  for  Steel  Bridges   i2mo. 

Wood's  (De  V.)  Treatise  on  the  Resistance  of  Materials,  and  an  Appendix  on 
the  Preservation  of  Timber   8vo, 

Wood's  (De  V.)  Elements  of  Analytical  Mechanics   8vo, 
"Wood's  (M.  P.)  Rustless  Coatings;    Corrosion  and  Electrolysis  of  Iron  and 

SteeL   8vo,    4  00 

RAILWAY  ENGINEERING. 

Andrew's  Handbook  for  Street  Railway  Engineers   3x5  inches,  morocco,  i  25 
Berg's  Buildings  and  Structures  of  American  Railroads   4to,  5  00 
Brook's  Handbook  of  Street  Railroad  Location   i6mo,  morocco,  1  50 
Butt's  Civil  Engineer's  Field-book   i6mo,  morocco,  2  50 
Crandall's  Transition  Curve   i6mo,  morocco,  i  50 

Railway  and  Other  Earthwork  Tables   8vo,  i  so 

Dawson's  "Engineering"  and  Electric  Traction  Pocket-book    .i6mo,  morocco,  5  00 
Dredge's  History  of  the  Pennsylvania  Railroad:   (1879)   Paper,    s  00 
*  Drinker's  Tunnelling,  Explosive  Compounds,  and  Rock  Drills. 4to,  half  mor.,  25  00 
Pisher's  Table  of  Cubic  Yards        ^,   Cardboard,  25 
Godwin's  Railroad  Engineers'  Field-book  and  Explorers'  Guide.  .  .  i6mo,  mor.,  2  50 
Howard's  Transition  Curve  Field-book   i6mo,  morocco,  i  50 
Hudson's  Tables  for  Calculating  the  Cubic  Contents  of  Excavations  and  Em- 

bankments.   8vo,  I  00 

Molitor  and  Beard's  Manual  for  Resident  Engineers.    i6mo,  i  00 
Nagle  s  Field  Manual  for  Railroad  Engineers   i6rao,  morocco.  3  go 

Philbrick's  Field  Manual  for  Engineers.  .      i6mo,  morocco,  3  00 
Searles's  Field  Engineering   i6mo,  morocco,  3  00 

Railroad  Spiral   i6mo,  morocco,  i  50 

Taylor's  Prismoidal  Formulae  and  Earthwork   8vo,  i  50 
*  Trautwines  Method  of  Calculating  the  Cube  Contents  of  Excavations  and 

Embankments  by  the  Aid  of  Diagrams   8vo,  2  00 
The  Field  Practice  of  Laying  Out  Circular  Curves  for  Railroads. 

i2mo,  morocco,  2  50 

Cross-section  Sheet   ,   Paper,  25 

"Webbs  Raihroad  Construction   i6mo,  morocco,  5  00 
Economics  of  Raikoad  Construction   Large  izmo,  2  50 

Wellington's  Economic  Theory  of  the  Location  of  Railways.      ....  Small  8vo.  5  00 

DRAWING. 

Barr's  Kinematics  of  Machinery   8vo  2  50 
*  Bartlett's  Mechanical  Drawing   8vo,  3  00 
*  ••                     «'                    "        Abridged  Ed   8vo,  150 

CooUdge's  Manual  of  Drawing   8vo,  paper,  i  00 
9 



Coolidge  and  Freeman's  Elements  of  General  Drafting  for  Mechanical  Engi- 
neers  Oblong  4to, 

Durley's  Kinematics  of  Machines   8vo, 
Emch's  Introduction  to  Projective  Geometry  and  its  Applications   8vo, 
Hill's  Text-book  on  Shades  and  Shadows,  and  Perspective   8vo, 
Jamison's  Elements  of  Mechanical  Drawing   8vo, 

Advanced  Mechanical  Drawing   8vo, 

Jones's  Machine  Design : 
Part  I.     Kinematics  of  Machinery   8vo, 
Part  II.     Form,  Strength,  and  Proportions  of  Parts   8vo, 

MacCord's  Elements  of  Descriptive  Geometry   8vo, 
Kinematics;   or.  Practical  Mechanism   8vo, 
Mechanical  Drawing   4to, 
Velocity  Diagrams   8vo, 

MacLeod's  Descriptive  Geometry   Small  8vo, 
*  Mahan's  Descriptive  Geometry  and  Stone-cutting   8vo, 

Industrial  Drawing.     (Thompson.)   8vo, 

Moyer's  Descriptive  Geometry   '.  .  .8vo, 
Reed's  Topographical  Drawing  and  Sketching   4to, 
Reid's  Course  in  Mechanical  Drawing   8vo, 

Text-book  of  Mechanical  Drawing  and  Elementary  Machine  Design. 8vo, 

Robinson's  Principles  of  Mechanism   8vo, 
Schwamb  and  Merrill's  Elements  of  Mechanism   8vo, 
Smith's  (R.  S.)  Manual  of  Topographical  Drawing.     (McMillan.)   8vo, 
Smith  (A.  W.)  and  Marx's  i^achine  Design   8vo, 
*  Titsworth's  Elements  of  Mechanical  Drawing   Oblong  8vo, 
Warren's  Elements  of  Plane  and  Solid  Free-hand  Geometrical  Drawing.  12 mo, 

Drafting  Instruments  and  Operations   i2mo. 
Manual  of  Elementary  Projection  Drawing   lamo. 
Manual  of  Elementary  Problems  in  the  Linear  Perspective  of  Form  and 

Shadow   i2mo, 
Plane  Problems  in  Elementary  Geometry   i2mo. 
Primary  Geometry  .1   i2mo, 
Elements  of  Descriptive  Geometry,  Shadows,  and  Perspective   8vo, 
General  Problems  of  Shades  and  Shadows   8vo, 
Elements  of  Machine  Construction  and  Drawing   8vo, 
Problems,  Theorems,  and  Examples  in  Descriptive  Geometry   Svo, 

Weisbach's    Kinematics    and    Power    of    Transmission.        (Hermann    and 
Klein.)   Svo, 

Whelpley's  Practical  Instruction  in  the  Art  of  Letter  Engraving   i2mo, 
Wilson's  (H.  M.)  Topographic  Surveying   Svo, 
Wilson's  (V.  T.)  Free-hand  Perspective   Svo, 
Wilson's  (V.  T.)  Free-hand  Lettering   Svo, 
Woo  If 's  Elementary  Course  in  Descriptive  Geometry   Large  Svo, 

ELECTRICITY  AND  PHYSICS. 

Anthony  and  Brackett's  Text-book  of  Physics.     (Magie.)   Small  Svo,  3  00 
Anthony's  Lecture-notes  on  the  Theory  of  Electrical  Measurements.  .  .  .  i2mo,  i  00 
Benjamin's  History  of  Electricity   Svo,  3  00 

Voltaic  Cell   Svo,  3  00 

Classen's  Quantitative  Chemical  Analysis  by  Electrolysis.     (Boltwood.).8vo,  3  00 
*  CoUins's  Manual  of  Wireless  Telegraphy   i2nio,  i  50 

Morocco,  2  00 

Crebore  and  Squier's  Polarizing  Photo-chronograph.  .      Svo,  3  00 
Dawson's  "Engine*-ring"  and  Electric  Traction  Pocket-book. ^6mo,  morocco,  5  00 
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Dolezalek's    Theory   of   the    Lead   Accumulator    (Storage    Battery).      (Von 
Ende.)   i2mo,  2  5a" 

Duhem's  Thermodynamics  and  Chemistry.     (Burgess.)   8vo,  4  0(x,. 
Flather's  Dynamometers,  and  the  Measurement  of  Power   i2mo,  3  oa 
Gilbert's  De  Magnete.     (Mottelay.)   8vo,  2  5a 
Hanchett's  Alternating  Currents  Explained   i2mo,  i  oo- 
Bering's  Ready  Reference  Tables  (Conversion  Factors)   i6mo,  morocco,  2  50 
Holman's  Precision  of  Measurements   8vo,  2  00 

Telescopic   Mirror-scale  Method,  Adjustments,  and  Tests.  . .  .Large  Svo,  75 

Kinzbrunner's  Testing  of  Continuous-current  Machines   Svo,  2  oo^ 
Landauer's  Spectrum  Analysis.     (Tingle.)   Svo,  3  00 
Le  Chateliers  High-temperature  Measurements.  (Boudouard — Burgess.)  i2mo,  3  00 

Lob's  Electrochemistry  of  Organic  Compounds.     (Lorenz.)   Svo,  3  00 
*  Lyons'?  Treatise  on  Electromagnetic  Phenomena.   Vols.  I.  and  II.  Svo,  each,  6  00 
*  Michie's  Elements  of  Wave  Motion  Relating  to  Sound  and  Light   Svo,  4  00 
Niaudet's  Elementary  Treatise  on  Electric  Batteries.     (Fishback.)   i2mo,  2  5a 
*  Parshall  and  Hobart's  Electric  Machine  Design   4to,  half  morocco,  12  5a 
*  Rosenberg's  Electrical  Engineering.     (Haldane  Gee — Kinzbrunner.).  ..Svo,  i  50. 
Ryan,  Norris,  and  Hoxie's  Electrical  Machinery.     Vol.  I   ,   Svo,  2  5a 
Thurston's  Stationary  Steam-engines   Svo,  2  50 
*  Tillman's  Elementary  Lessons  in  Heat   Svo,  i  50 
Tory  and  Pitcher's  Manual  of  Laboratory  Physics   Small  Svo,  2  ca 
Ulke's  Modern  Electrolytic  Copper  Refining   Svo,  3  00. 

LAW. 

*  Davis's  Elements  of  Law   8vo, 
*  Treatise  on  the  MiUtary  Law  of  United  States   Svo, 
*  Sheep, 

Manual  for  Courts-martial   i6mo,  morocco. 

Wait's  Engineering  and  Architectiiral  Jtu-isprudence   Svo, 

Sheep, 

Law  of  Operations  Preliminary  to  Construction  in  Engineering  and  Archi- 
tecture  8vo, 

Sheep, 

Law  of  Contracts   8vo, 

Winthrop's  Abridgment  of  Military  Law   i2mo, 

MANUFACTURES. 

Bernadou's  Smokeless  Powder— Nltro-cellulosc  and  Theory  of  the  Cellulose 
Molecule     "mo, 

Bolland's  Iron  Founder   i2mo. 
The  Iron  Founder,"  Supplement   i2mo. 

Encyclopedia  of  Founding  and  Dictionary  of  Foundry  Terms  Used  in  the 

Practice  of  Moulding   i2mo, 

Claassen's  Beet-sugar  Manufacture.    (Hall  and  Rolfe.)   8vo, 

*  Eckel's  Cements,  Limes,  and  Plasters   8vo, 

Eissler's  Modern  High  Explosives   8vo, 

Effront's  Enzymes  and  their  Applications.     (Prescott.)   Svo, 

Fitzgerald's  Boston  Machinist   •   i2mo. 

Ford's  Boiler  Making  for  Boiler  Makers   i8mo, 

Hopkin's  Oil-chemists'  Handbook   8vo, 

Keep's  Cast  Iron   ^^^» n 
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Xeach's  The  Inspection  and  Analysis  of  Food  with  Special  Reference  to  State 
Control.   Large  8vo, 

*  McKay  and  Larsen's  Principles  and  Practice  of  Butter-making   8vo, 
Matthews's  The  Textile  Fibres   8vo, 
Metcalf' s  Steel.     A  Manual  for  Steel-users   i2mo, 
Metcalfe's  Cost  of  Manufactures — And  the  Administration  of  Workshops. Svo, 
Meyer's  Modern  Locomotive  Construction   4to, 
Morse's  Calculations  used  in  Cane-sugar  Factories   i6mo,  morocco, 
*  Reisig's  Guide  to  Piece-dyeing   Svo, 
Rice's  Concrete-block  Manufacture   Svo, 
Sabin's  Industrial  and  Artistic  Technology  of  Paints  and  Varnish   Svo, 
Smith's  Press-working  of  Metals   Svo, 
Spalding's  Hydraulic  Cement   i2mo, 
vSpencer's  Handbook  for  Chemists  of  Beet-sugar  Houses   i6mo,  morocco. 

Handbook  for  Cane  Sugar  Manufacturers   »6mo,  morocco, 

Taylor  and  Thompson's  Treatise  on  Concrete,  Plain  and  Reinforced   Svo, 
Thurston's  Manual  of  Steam-boilers,  their  Designs,  Construction  and  Opera- 
tion  Svo, 

*  Walke's  Lectures  on  Explosives   Svo, 
Ware's  Beet-sugar  Manufacture  and  Refining   Small  Svo, 
Weaver's  Military  Explosives   Svo, 
West's  American  Foundry  Practice   i2mo, 

Moulder's  Text-book   i2mo, 
Wolff's  Windmill  as  a  Prime  Mover   Svo, 
food's  Rustless  Coatings:   Corrosion  and  Electrolysis  of  Iron  and  Steel.  .Svo, 

MATHEMATICS. 

Baker's  Elliptic  Functions   Svo,  i  50 
*  Bass's  iilements  of  Differential  Calculus   i2mo,  4  00 
Briggs's  Elements  of  Plane  Analsrtic  Geometry.  . , :   i2mo,  1  00 
Compton's  Manual  of  Logarithmic  Computations   i2mo,  i  50 
Davis's  Introduction  to  the  Logic  of  Algebra   Svo,  i  50 
*  Dickson's  College  Algebra   Large  i2mo,  i  50 
*  Introduction  to  the  Theory  of  Algebraic  Equations   Large  i2mo,  i  25 

Emch's  Introduction  to  Projective  Geometry  and  its  Applications   Svo,  2  50 
Halsted's  Elements  of  Geometry   Svo,  i  75 

Elementary  Synthetic  Geometry   Svo,  i  50 
Rational  Geometry   i2mo,  i  75 

*  Johnson's  (J.  B.)  Three-place  Logarithmic  Tables:   Vest-pocket  size. paper,  15 
100  copies  for  5  00 

^                                                       Mounted  on  heavy  cardboard,  8  X  10  inches,  25 
10  copies  for  2  00 

Johnson's  (W  W.)  Elementary  Treatise  on  Differential  Calculus.  .Small  Svo,  3  00 
Elementary  Treatise  on  the  Integral  Calculus   Small  Svo,  i  50 

Johnsozi's  fW.  W.)  Curve  Tracing  in  Cartesian  Co-ordinates   i2mo,  i  00 
Johnson's  (W    W.)  Treatise  on  Ordinary  and  Partial  Differential  Equations. Small  Svo,  3  50 

Johnson's  (W.  W.)  Theory  of  Errors  and  the  Method  of  Least  Squares.  i2mo,  i  50 
*  Johnson's  (W   W.)  Theoretical  Mechanics   i2mo,  3  00 
Laplace's  Philosophical  Essay  on  Probabilities.    (Truscott  and  Emory.) .  i2rao,  2  00 
*  Ludlow  and  Bass.     Elements  of  Trigonometry  and  Logarithmic  and  Other 

Tables   Svo,  3  00 
Trigonometry  and  Tables  published  separately     Each,  2  00 

*  Ludlow's  Logarithmic  and  Trigonome'ric  Tables   Svo.  x  00 
Manning's  Irrational  Numbers  and  their  Representation  by  Sequences  and  Series 

lamo  I  25 



Mathematical  Monographs.     Edited  by  Mansfield  Merriman  and  Robert 
S.  Woodward   Octavo,  each 

No.  I.  History  of  Modern  Mathematics,  by  David  Eugene  Smith. 
No.  2.  Synthetic  Projective  Geometry,  by  George  Bruce  Halsted. 
No.  3.  Determinants,  by  Laenas  Gifford  Weld.  No.  4.  Hyper- 

bolic Functions,  by  James  McMahon.  No.  5.  Harmonic  Func- 
tions, by  WiUiam  E.  Byerly.  No.  6.  Grassmann's  Space  Analysis, 

by  Edward  W.  Hyde.  No.  7.  Probability  and  Theory  of  Errors, 
by  Robert  S.  Woodward.  No.  8.  Vector  Analysis  and  Quaternions, 
by  Alexander  Macfarlane.  No.  9.  Differential  Equations,  by 
William  Woolsey  Johnson.  No.  10.  The  Solution  of  Equations, 
by  Mansfield  Merriman.  No.  11.  Functions  of  a  Complex  Variable, 
by  Thomas  S.  Fiske. 

Maurer's  Technical  Mechanics   8vo 
Merriman's  Method  of  Least  Squares   8vo, 
Rice  and  Johnson's  Elementary  Treatise  on  the  Differential  Calculus. .  Sm.  8vo,    3  00 

50 

4  00 

2  00 

Differential  and  Integral  Calculus.     2  vols,  in  one   Small  8vo,    2 

Wood's  Elements  of  Co-ordinate  Geometry   8vo,    2  00 
Trigonometry;  Analytical,  Plane,  and  Spherical   i2mo,    i  00 

MECHANICAL  ENGINEERING. 

MATERIALS  OF  ENGINEERING,  STEAM-ENGINES  AND  BOILERS. 

Bacon's  Forge  Practice   .^   i2mo, 
Baldwin's  Steam  Heating  for  Buildings   i2mo, 
Barr's  Kinematics  of  Machinery   '   8vo, 
*  Bartlett's  Mechanical  Drawing   8vo, 
*  "  "  "        Abridged  Ed   8vo, 
Benjamin's  Wrinkles  and  Recipes   i2mo. 
Carpenter's  Experimental  Engineering   8vo, 

Heating  and  Ventilating  Buildings   8vo, 

Cary's  Smoke  Suppression  in  Plants  using  Bituminous  Coal.     (In  Prepara- tion.) 

Clerk's  Gas  and  Oil  Engine   Small  8vo, 
Coolidge's  Manual  of  Drawing   8vo,  paper, 
Coolidge  and  Freeman's  Elements  of  General  Drafting  for  Mechanical  En- 

gineers  Oblong  4to, 

Cromwell's  Treatise  on  Toothed  Gearing   i2mo. 
Treatise  on  Belts  and  Pulleys   i2mo, 

Durley's  Kinematics  of  Machines   8vo, 
Flather's  Dynamometers  and  the  Measurement  of  Power   i2mo, 

Rope  Driving   i2mo. 

Gill's  Gas  and  Fuel  Analysis  for  Engineers   i2mo. 
Hall's  Car  Lubrication   i2mo, 
Hering's  Ready  Reference  Tables  (Conversion  Factors)   i6mo,  morocco, 
Hutton's  The  Gas  Engine   8vo, 
Jamison's  Mechanical  Drawing   8vo, 
Jones's  Machine  Design: 

Part  I.     Kinematics  of  Machinery   ,   8vo, 
Part  II.     Form,  Strength,  and  Proportions  of  Parts   8vo, 

Kent's  Mechanical  Engineers'  Pocket-book   i6mo,  morocco, 
Kerr's  Power  and  Power  Transmission   8vo, 
Leonard's  Machine  Shop,  Tools,  and  Methods   8vo, 
*  Lorenz's  Modern  Refrigerating  Machinery.    (Pope,  Haven,  and  Dean.) .  .  8vo, 
MacCord's  Kinematics;   or  Practical  Mechanism.   8vo, 

Mechanical  Drawing   4*0- 
Velocity  Diagrams   8vo, 
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MacFarland's  Standard  Reduction  Factors  for  Gases   ~;   8vo, 
Mahan's  Industrial  Drawing.     (Thompson.)   8vo, 
Poole's  Calorific  Power  of  Fuels   8vo, 
Reid's  Course  in  Mechanical  Drawing   Svo, 

Text-book  of  Mechanical  Drawing  and  Elementary  Machine  Design. Svo, 

Richard's  Compressed  Air   i2mo, 
Robinson's  Principles  of  Mechanism   Svo, 
Schwamb  and  Merrill's  Elements  of  Mechanism   Svo, 
Smith's  (O.)  Press-working  of  Metals   Svo, 
Smith  (A,  W.)  and  Marx's  Machine  Design   Svo, 
Thurston's  Treatise  on  Friction  and  Lost  Work  in  Machinery  and  Mill 

Work..  .   Svo, 
Animal  as  a  Machine  and  Prime  Motor,  and  the  Laws  of  Energetics.  i2mo, 

Warren's  Elements  of  Machine  Construction  and  Drawing   Svo, 
Weisbach's  Kinematics  and  the  Power  of  Transmission.  (Herrmann — 

Klein.).  .   Svo, 

Machinery  of  Transmission  and  Governors.     (Herrmaim — Klein.).  .Svo, 

Wolff's  Windmill  as  a  Prime  Mover   Svo, 
Wood's  Turbines   Svo, 

MATERIALS   OP  ENGINEERING. 

*  Bovey's  Strength  of  Materials  and  Theory  of  Structures   Svo,    7  5( 
Burr's  Elasticity  and  Resistance  of  the  Materials  of  Engineering.    6th  Edition. 

Reset   Svo, 

Church's  Mechanics  of  Engineering   Svo, 
*  Greene's  Structural  Mechanics   Svo, 
Johnson's  Materials  of  Construction   Svo, 
Keep's  Cast  Iron.             .  Svo, 
Lanza's  Applied  Mechanics   Svo, 
Martens's  Handbook  on  Testing  Materials.     (Henning.)   Svo, 
Maurer's  Technical  Mechanics   Svo, 
Merriman's  Mechanics  of  Materials   Svo, 

Strength  of  Materials   i2mo, 

Metcalf's  Steel,     A  manual  for  Steel-users   i2mo, 
Sabin's  Industrial  and  Artistic  Technology  of  Paints  and  Varnish   Svo, 
Smith's  Materials  of  Machines   i2mo, 
Thurston's  Materials  of  Engineering   3  vols.,  Svo, 

Part  II.     Iron  and  Steel   Svo, 
Part  III.     A  Treatise  on  Brasses,  Bronzes,  and  Other  Alloys  and  their 

Constituents      Svo, 

Text-book  of  the  Materials  of  Construction   Svo, 

Wood's  CDe  V.)  Treatise  on  the- Resistance  of  Materials  and  an  Appendix  on 
the  Preservation  of  Timber   Svo, 

Elements  of  Analytical  Mechanics   Svo, 

Wood's  (M.  P  )  Rustless  Coatings:    Corrosion  and  Electrolysis  of  Iron  and 
Steel   Svo,    4  00 

STEAM-ENGINES  AND  BOILERS. 

Berry's  Temperature-entropy  Diagram   i2mo,  i  25 
Camot's  Reflections  on  the  Motive  Power  of  Heat.     (Thurston.).    .     .  .  i2mo,  i  50 
Dawson's  "Engineering"  and  Electric  Traction  Pocket-book.  .  .  .  i6mo  mor.,  5  00 
Ford's  Boiler  Making  for  Boiler  Makers   iSmo,  i  oa 
Goss's  Locomotive  Sparks   Svo,  2  00 
Hemenway's  Indicator  Practice  and  Steam-engine  Economy   i2mo,  2  00 
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Hutton's  Mechanical  Engineering  of  Power  Plants.    ^ ..... .  .8vo," 
Heat  and  Heat-engines   8vo., 

Xent's  Steam  boiler  Economy   8vo, 
Kneass's  Practice  and  Theory  of  the  Injector   8vo, 
MacCord's  Slide-valves   8vo, 

Me  Jeer's  Modern  Locomotive  Construction   4to, 
JSeabody's  Manual  of  the  Steam-engine  Indicator   fimo. 

Tables  of  the  Properties  of  Saturated  Steam  and  Other  Vapors     8vo, 
Thermodynamics  of  the  Steam-engine  and  Other  Heat-engines.   Svo, 
Valve-gears  for  Steam-engines   Svo, 

Teabody  and  Miller's  Steam-boilers   Svo, 
Pray's  Twenty  Years  with  the  Indicator   Large  Svo, 
Pupin's  Thermodynamics  of  Reversible  Cycles  in  Gases  and  Saturated  Vapors. 

(Osterberg.).  .   i2mo, 

Reagan's  Locomotives:   Simple   Compound,  and  Electric   lamo, 
Rontgen's  Principles  of  Thermodynamics.     (Du  Bois.)   Svo, 
Sinclair's  Locomotive  Engine  Running  and  Management   i2mo, 
Smart's  Handbook  of  Engineering  Laboratory  Practice   i2mo, 
SniTw's  Steam-boiler  Practice   Svo, 
^pangler's  Valve-gears   Svo, 

Notes  on  Thermodynamics   i2mo, 

Spangler,  Greene,  and  Marshall's  Elements  of  Steam-engineering   Svo, 
Thomas's  Steam-turbines   Svo, 
"Thurston's  Handy  Tables   Svo, 

Manual  of  the  Steam-engine   2  vols.,  Svo, 
Part  I.     History,  Structure,  and  Theory   Svo, 
Part  II.     Design,  Construction,  and  Operation   Svo, 
Handbook  of  Engine  and  Boiler  Trials,  and  the  Use  of  the  Indicator  and 

the  Prony  Brake   Svo, 

Stationary  Steam-engines   Svo, 
Steam-boiler  Explosions  in  Theory  and  in  Practice   ^   i2mo, 

Tffianual  of  Steam-boilers,  their  Designs,  Construction,  and  Operation   Svo, 

Wehrenfenning's  Analysis  and  Softening  of  Boiler  Feed-water  (Patterson)  Svo, 
Weisbach's  Heat,  Steam,  and  Steam-engines.     (Du  Bois.)   Svo, 
Whitham's  Steam-engine  Design   Svo, 
Wood's  Thermodynamics,  Heat  Motors,  and  Refrigerating  Machines. .. Svo, 

MECHANICS  AND  MACHINERY. 

Barr's  Kinematics  of  Machinery   Svo, 
*  Bovey's  Strength  of  Materials  and  Theory  of  Structures    Svo, 
Chase's  The  Art  of  Pattern-making   i2mo, 
Church's  Mechanics  of  Engineering   Svo, 

Notes  and  Examples  in  Mechanics   Svo, 

Compton's  First  Lessons  in  Metal-working   lamo, 
Compton  and  De  Groodt's  The  Speed  Lathe   i2mo, 
Cromwell's  Treatise  on  Toothed  Gearing   i2mo. 

Treatise  on  Belts  and  Pulleys   i2mo, 

Dana's  Text-book  of  Elementary  Mechanics  for  Colleges  and  Schools.  .i2mo. 
Dingey's  Machinery  Pattern  Making   i2mo. 
Dredge's  Record  of  the  Transportation  Exhibits  Building  of  the  World's 

Columbian  Exposition  of  1893   4to  half  morocco,    5  00 

u  Bois's  Elementary  Principles  of  Mechanics; 
Vol.      L     Kinematics   Svo,    350 
Vol.    IL     Statics   ,   8vo,    400 
Mechanics  of  Engineering.     Vol.    I   Small  4to,    7  5o 

Vol.  II   Small  4to,  10  00 

hurley's  Kinematics  of  Machines.  .      .\ . . ,   Svo,    4  00 
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^tzcef«ld*s  Boston  Macliimst        x6ino,  i 
Fktther's  Dynamometers,  and  the  Measurement  of  Power   lamo,  3 

RopeDrivins                                                              lamo,  .• 

Go6S*s  LocomotiTe  Sparks.      8vo, 
*  Greene's  Structural  Mechanics.   8vo,  . 
Hall's  Car  Lubrication.   lamo. 
Holly's  Art  of  Saw  Filing   i4mo. 
James's  Kinematics  of  a  Point  and  the  Rational  Mechanics  of  a  Particle. Small  Svo.  3 

*  Johnson's  (W.  W.")  Theoretical  Mechanics.   lamo,  3 
Johnson's  ̂ L.  J.)  Statics  by  Graphic  and  Algebraic  Methods.   «  . .  .8vo,  2 
Jones's  Machine  Design: 

Part   I.     Kinematics  of  Machinery.                                 . .  .8vo,  1 
Part  n.     Form,  Strength,  and  Proportions  of  Parts.   8vo.  3 

Kerr's  Power  and  Power  Transmission.   8vo,  2 
Lanza's  Applied  Mechanics.   8vo,  7 
Leonard's  Machine  Shop.  Tools,  and  Methods   8vo,  4 
*  Lorenz's  Modem  Refrigerating  Machinery.     (Pope,  Haven,  and  Dean.) . 8vo,  4 
MacCord's  Kinematics:  or.  Practical  Mechanism.   8vo,  s 

Velocity  Diagrams.   Svo,  i 

*  Martin's  Text  Book  on  Mechanics,  VoL  I,  Statics.                       .  .  lamo.  i 
Manrer's  Technical  Mechanics.                        Svo,  4 
Merriman's  Mechanics  of  Materials.   Svo,  5 
*  Elements  of  Mechanics.   xamo.  t 

*  Michie's  Elements  of  Analytical  Mechanics.   Svo,  4 
*  Parshall  and  Hobarfs  Electric  Machine  Design   4to,  half  morocco,  la 

Reagan's  Locomotives    Simple,  Compound,  and  Electric   lamo,  a 
Reid's  Cotirse  in  Mechanical  Drawing   Svo,  a 

Text-book  of  Mechanical  Drawing  and  Elementary  Machine  Design. Svo,  3 

Richards's  Compressed  Air   lamo,  i 
Robinson's  Principles  of  Mechanism.                         Svo,  3 
Ryan,  Morris,  and  Hoxie's  Electrical  Machinery.     VoL  L   8\-o,  a 
Sanborn's  Mechanics :  Problems   Large  lamo,  i 

Schwamb  and  Merrill's  Elements  of  Mechanism   Svo,  3 
Sinclair's  Locomotive-engine  Running  and  Management.  .                    ...  lamo,  a 
Smith's  (O.)  Press-working  of  Metals   Svo,  3 
Smith's  (A.  W.)  Materials  of  Machines.   xamo,  i 
Smith  (A,  W.>  and  Marx's  Machine  Design.   Svo,  3 
Spanglar,  Greene,  and  Marshall's  Elements  of  Steam-engineering   Svo,  3 
Thurston's  Treatise  on  Friction  and  Lost  Work  in    Machinery  and    Mill 

Work   Svo,  3 
Animal  as  a  Machine  and  Prime  Motor,  and  the  Lawc  of  Energetics,  i  amo,  i 

Warren's  Elements  of  Machine  Construction  and  Drawini.   Svo,  7 
Weisbach's  Kinematics  and  Power  of  Transmission.   ( Herrmann — Klein. ) .  Svo,  5 

Machinery  of  Transmission  and  Governors.      (Herrmann — Kmn.).8vo,  5 
Wood's  Elements  of  Analytical  Mechanics.   Svo,  3 

Piinciples  of  Elementary  Mechanics.   lamo.  i 
Turbines   Svo,  a 

The  World's  Columbian  Exposition  of  X893   4to.  x 

METALLURGY. 

Egleston's  Metallurgy  of  Silver.  Gold,  and  Mercury 
VoL    I.     Silver   Svo,  7 
VoL  n.     Gold  and  Mercury        Svo,  7 

Goesel's  Minerals  and  Metals*     a  Reference  Book   i6mo,  mor.  3 
♦♦  Iles's  Lead-smelting.     (Postage  0  cents  additional.)   lamo,  a 
Keep's  Cast  Iron.      Svo,  a 
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Kunhardt's  Practice  of  Ore  Dressing  in  Europe   8vo, 
Le  Chatelier's  High-temperature  Measurements.  (Boudouard — Burgess. )iamo. 
IVIetcalf* s  Steel.     A  Manual  for  Steel-users   i2mo 
Miller's  Cyanide  Process   lamo' 
Minet's  Production  of  Aluminum  and  its  Industrial  Use.     (Waldo.). . .  .  i2mo, 
Robine  and  Lenglen's  Cyanide  Industry.     (Le  Clerc.)   8vo, 
Smith's  Materials  of  Machines   lamo, 
Thurston's  Materials  of  Engineering.     In  Three  Parts   8vo, Part    II.     Iron  and  Steel   8vo, 

Part  III.     A  Treatise  on  Brasses,  Bronzes,  and  Other  Alloys  and  their 
Constituents   8vo 

Ulke's  Modern  Electrolytic  Copper  Refining   8vo, 

MINERALOGY. 

Barringer's  Description  of  Minerals  of  Commercial  Value.    Oblong,  morocco,  2  50- 
Boyd's  Resources  of  Southwest  Virginia   8vo,  3  oa 

Map  of  Southwest  Virignia   Pocket-book  form.  2  00 

Brush's  Manual  of  Determinative  Mineralogy.     (Penfleld.)   8vo,  4  00 
Chester's  Catalogue  of  Minerals   8vo,  paper,  i  00 Cloth,  1  25 

Dictionary  ot  the  Names  of  Minerals   8vo  3  50. 

Dana's  System  of  Mineralogy   Large  8vo,  half  leather    12  50 
First  Appendix  to  Dana's  New  "  System  of  Mineralogy."   Large  8vo,  i  00 
Text-book  of  Mineralogy   8vo,  4  00 
Minerals  and  How  to  Study  Them   i2mo,  i  50 
Catalogue  of  American  Localities  of  Minerals   Large  8vo,  i  oo 
Manual  of  Mineralogy  and  Petrography   i2mo  2  00 

Douglas's  Untechnical  Addresses  on  Technical  Subjects   i2mo,  i  00 
Eakle's  Mineral  Tables   8vo,  i  25 
Egleston's  Catalogue  of  Minerals  and  Synonyms   8vo,  2  50 
Goesel's  Minerals  and  Metals :     A  Reference  Book   i6mo,  mor..  3  00 
Groth's  Introduction  to  Chemical  Crystallography  (Marshall)      i2mo,  i  25 
Hussak's  The  Determination  of  Rock-forming  Minerals.    ( Smith.). Small  8vo,  2  00 
Merrill's  Non-metallic  Minerals'   Their  Occurrence  and  Lses   8vo,  4  oa 
*  Penfield's  Notes  on  Determinative  Mineralogy  and  Record  of  Mineral  Tests. 

8vo,  paper,  5a 

Rosenbusch's   Microscopical   Physiography   of  the   Rock-making  Minerals. 
(Iddings.)   8vo,  5  oa 

*  Tillman's  Text-book  of  Important  Minerals  and  Rocks   8vo,  2  oa 

MINING. 

Beard's  Ventilation  of  Mines   i2mo,  2  5a 

Boyd's  Resources  of  Southwest  Virginia   8vo,  3  00 
Map  of  Southwest  Virginia   Pocket-book  form,  2  00 

Douglas's  Untechnical  Addresses  on  Technical  Subjects   i2mo,  i  o(^ 
*  Drinker's  Tunneling,  Explosive  Compounds,  and  Rock  Drills.  .4to,hf.  mor.,  as  00 
Eissler's  Modern  High  Explosives.        8^->  4  '■o 
Goesel's  Minerals  and  Metals '     A  Reference  Book   i6mo,  mor.  3  oa 
Goodyear's  Coal-mines  of  the  T,  estern  Coast  of  the  United  States   i2mo,  2  50 
Ihlseng's  Manual  of  Mining   8vo,  5  00 
**  Iles's  Lead-smelting.     (Postage  9c.  additionaL)   i2mo,  2  50 
Kunhardt's  Practice  of  Ore  Dressing  in  Europe   8vo,  i  50 
Miller's  Cyanide  Process   i2mo,  i  oa 17 



fO'DriscoU's  Notes  on  the  Treatment  of  Gold  Ores   ,   8vo, 
Robine  and  Lenglen's  Cyanide  Industry.     (Le  Clerc.)   8vo, 
*  Walke's  Lectures  on  Explosives   8vo, 
Weaver's  Military  Explosives   8vo, 

"  Wilson's  Cyanide  Processes   i2mo, 
Chlorination  Process   i2mo, 
Hydraulic  and  Placer  Mining   i2mo, 
Treatise  on  Practical  and  Theoretical  Mine  Ventilation   T2nio, 

SANITARY  SCIENCE/ 

Bashore's  Sanitation  of  a  Country  House   i2mo,     i 
*  Outlines  of  Practical  Sanitation   i2mo,    i 

Folwell's  Sewerage.     (Designing,  Construction,  and  Maintenance.)   8vo,    3 
Water-supply  Engineering   8vo,  4 

Fowler's  Sewage  Works  Analsrses   i2mD,  2 
Fuertes's  Water  and  Public  Health   i2mo,  i 

Water-filtration  Works   i2mo,  2 

Gerhard's  Guide  to  Sanitary  House-inspection   i6mo,  i 
Goodrich's  Economic  Disposal  of  Town's  Refuse   Demy  8vo,  3 
Hazen's  Filtration  of  Public  Water-supplies   8vo,  3 
Leach's  The  Inspection  and  Analysis  of  Food  with  Special  Reference  to  State 

Control   8vo,  7 

Mason's  Water-supply.  (Considered  principally  from  a  Sanitary  Standpoint)  8vo,  4 
Examination  of  Water.     (Chemical  and  Bacteriological.)   i2mo,  1 

Ogden's  Sewer  Design   i2mo,  2 
Prescott  and  Winslow's  Elements  of  Water  Bacteriology,  with  Special  Refer- 

ence to  Sanitary  Water  Analysis   i2mo,  i 

*  Price's  Handbook  on  Sanitation   i2mo,  i 
Richards's  Cost  of  Food.     A  Study  in  Dietaries   i2mo,  i 

Costjof  Living  as  Modified  by  Sanitary  Science   i2mo,    i 
Cost  of  Shelter    i2mo,     i 

Richards  and  Woodman's  Air.  Water,  and  Food  from  a  Sanitary  Stand- 
point  8vo, 

*  Richards  and  Williams's  The  Dietary  Computer   8vo, 
Rideal's  Sewage  and  Bacterial  Purification  of  Sewage   8vo, 
Turneaure  and  Russell's  Public  Water-supplies        8vo, 
Von  Behring's  Suppression  of  Tuberculosis.     (Boldixan.)   i2mo, 
Whipple's  Microscopy  of  Drinking-water   8vo, 
Winton's  Microscopy  of  Vegetable  Foods   8vo, 
Woodhull's  Notes  on  Military  Hygiene.  .•   i6mo, 
*  Personal  H/giene   i2mo. 

MISCELLANEOUS. 

De  Fursac's  Manual  of  Psychiatry.     (Rosanoff  and  Collins.).  .  .  .Large  i2mo, 
Ehrlich's  Collected  Studies  on  Immunity  (Bolduan)   8vo, 
Emmons's  Geological  Guide-book  of  the  Rocky  Mountain  Excursion  of  the 

International  Congress  of  Geologists   Large  £vo, 

Ferrel's  Popular  Treatise  on  the  Winds   8vo. 
Haines's  American  Railway  Management   i2mo, 
Mott's  Fallacy  of  the  Present  Theory  of  Sound   i6mo, 
Ricketts's  History  of  Rensselaer  Polytechnic  Institute,  1824-1894.. Small  8vo, 
Rostoski's  Serum  Diagnosis.     (Bolduan.)   i2mo , 
Rotherbam's  Emphasized  New  Testament   r   Large  8vo, 18 



Steel's  Treatise  on  the  Diseases  of  the  Dog   8vo,  3  50 
The  World's  Columbian  Lxposition  of  1893   4to,  1  00 
Von  Behring's  Suppression  of  Tuberculosis.     (Bolduan.)   i2mo,  i  00 
Winslow's  Elements  of  Applied  Microscopy   i2mo,  i  50 
Worcester  an ■^^  Atkinson.     Small  Hospitals,  Establishment  and  Maintenance; 

Suggestions  for  Hospital  Architecture :  Plans  for  Small  Hospital .  i2mo,  i  25 

HEBREW  AND  CHALDEE  TEXT-BOOKS. 

Green's  Elementary  Hebrew  Grammar   *.   i2mo,  i  23 
Hebrew  Chrestomathy   8vo,  2  00 

Gesenius's  Hebrew  and  Chaldee  Lexicon  to  the  Old  Testament  Scriptures. 
(Tregelles.)   Small  4to,  half  morocco.  5  00 

Letteris's  Hebrew  Bible   8vo,  2  25 19 
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